




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
河北省石家莊康福外國語校2024屆中考數(shù)學(xué)全真模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.對于數(shù)據(jù):6,3,4,7,6,0,1.下列判斷中正確的是()A.這組數(shù)據(jù)的平均數(shù)是6,中位數(shù)是6 B.這組數(shù)據(jù)的平均數(shù)是6,中位數(shù)是7C.這組數(shù)據(jù)的平均數(shù)是5,中位數(shù)是6 D.這組數(shù)據(jù)的平均數(shù)是5,中位數(shù)是72.如圖,已知直線PQ⊥MN于點O,點A,B分別在MN,PQ上,OA=1,OB=2,在直線MN或直線PQ上找一點C,使△ABC是等腰三角形,則這樣的C點有()A.3個B.4個C.7個D.8個3.點A(-1,y1),B(-2,y2)在反比例函數(shù)y=2x的圖象上,則A.y1>y2 B.y1=y2 C.4.等腰三角形一條邊的邊長為3,它的另兩條邊的邊長是關(guān)于x的一元二次方程x2﹣12x+k=0的兩個根,則k的值是()A.27 B.36 C.27或36 D.185.在平面直角坐標(biāo)系中,點是線段上一點,以原點為位似中心把放大到原來的兩倍,則點的對應(yīng)點的坐標(biāo)為()A. B.或C. D.或6.一元二次方程的根是()A. B.C. D.7.在實數(shù),,,中,其中最小的實數(shù)是()A. B. C. D.8.如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進(jìn)行下去,A11B11C11D11E11F11的邊長為()A. B. C. D.9.如圖,AB∥CD,點E在CA的延長線上.若∠BAE=40°,則∠ACD的大小為()A.150° B.140° C.130° D.120°10.在國家“一帶一路”倡議下,我國與歐洲開通了互利互惠的中歐專列.行程最長,途經(jīng)城市和國家最多的一趟專列全程長13000km,將13000用科學(xué)記數(shù)法表示應(yīng)為()A.0.13×105 B.1.3×104 C.1.3×105 D.13×103二、填空題(本大題共6個小題,每小題3分,共18分)11.觀察以下一列數(shù):3,,,,,…則第20個數(shù)是_____.12.如圖,菱形ABCD的邊AD⊥y軸,垂足為點E,頂點A在第二象限,頂點B在y軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象經(jīng)過頂點C、D,若點C的橫坐標(biāo)為5,BE=3DE,則k的值為______.13.已知一紙箱中,裝有5個只有顏色不同的球,其中2個白球,3個紅球,若往原紙箱中再放入x個白球,然后從箱中隨機(jī)取出一個白球的概率是2314.如圖,△ABC中,D、E分別在AB、AC上,DE∥BC,AD:AB=1:3,則△ADE與△ABC的面積之比為______.15.如圖,直線y1=mx經(jīng)過P(2,1)和Q(-4,-2)兩點,且與直線y2=kx+b交于點P,則不等式kx+b>mx>-2的解集為_________________.16.不透明袋子中裝有個球,其中有個紅球、個綠球和個黑球,這些球除顏色外無其他差別.從袋子中隨機(jī)取出個球,則它是黑球的概率是_____.三、解答題(共8題,共72分)17.(8分)如圖,分別與相切于點,點在上,且,,垂足為.求證:;若的半徑,,求的長18.(8分)計算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.19.(8分)已知:如圖,在正方形ABCD中,點E、F分別是AB、BC邊的中點,AF與CE交點G,求證:AG=CG.20.(8分)如圖,在平面直角坐標(biāo)系中,直線經(jīng)過點和,雙曲線經(jīng)過點B.(1)求直線和雙曲線的函數(shù)表達(dá)式;(2)點C從點A出發(fā),沿過點A與y軸平行的直線向下運(yùn)動,速度為每秒1個單位長度,點C的運(yùn)動時間為t(0<t<12),連接BC,作BD⊥BC交x軸于點D,連接CD,①當(dāng)點C在雙曲線上時,求t的值;②在0<t<6范圍內(nèi),∠BCD的大小如果發(fā)生變化,求tan∠BCD的變化范圍;如果不發(fā)生變化,求tan∠BCD的值;③當(dāng)時,請直接寫出t的值.21.(8分)解不等式組:2x+122.(10分)正方形ABCD的邊長為3,點E,F(xiàn)分別在射線DC,DA上運(yùn)動,且DE=DF.連接BF,作EH⊥BF所在直線于點H,連接CH.(1)如圖1,若點E是DC的中點,CH與AB之間的數(shù)量關(guān)系是______;(2)如圖2,當(dāng)點E在DC邊上且不是DC的中點時,(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說明理由;(3)如圖3,當(dāng)點E,F(xiàn)分別在射線DC,DA上運(yùn)動時,連接DH,過點D作直線DH的垂線,交直線BF于點K,連接CK,請直接寫出線段CK長的最大值.23.(12分)有兩把不同的鎖和四把不同的鑰匙,其中兩把鑰匙恰好分別能打開這兩把鎖,其余的鑰匙不能打開這兩把鎖.現(xiàn)在任意取出一把鑰匙去開任意一把鎖.(1)請用列表或畫樹狀圖的方法表示出上述試驗所有可能結(jié)果;(2)求一次打開鎖的概率.24.尺規(guī)作圖:用直尺和圓規(guī)作圖,不寫作法,保留痕跡.已知:如圖,線段a,h.求作:△ABC,使AB=AC,且∠BAC=∠α,高AD=h.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】
根據(jù)題目中的數(shù)據(jù)可以按照從小到大的順序排列,從而可以求得這組數(shù)據(jù)的平均數(shù)和中位數(shù).【詳解】對于數(shù)據(jù):6,3,4,7,6,0,1,這組數(shù)據(jù)按照從小到大排列是:0,3,4,6,6,7,1,這組數(shù)據(jù)的平均數(shù)是:中位數(shù)是6,故選C.【點睛】本題考查了平均數(shù)、中位數(shù)的求法,解決本題的關(guān)鍵是明確它們的意義才會計算,求平均數(shù)是用一組數(shù)據(jù)的和除以這組數(shù)據(jù)的個數(shù);中位數(shù)的求法分兩種情況:把一組數(shù)據(jù)從小到大排成一列,正中間如果是一個數(shù),這個數(shù)就是中位數(shù),如果正中間是兩個數(shù),那中位數(shù)是這兩個數(shù)的平均數(shù).2、D【解析】試題分析:根據(jù)等腰三角形的判定分類別分別找尋,分AB可能為底,可能是腰進(jìn)行分析.解:使△ABC是等腰三角形,當(dāng)AB當(dāng)?shù)讜r,則作AB的垂直平分線,交PQ,MN的有兩點,即有兩個三角形.當(dāng)讓AB當(dāng)腰時,則以點A為圓心,AB為半徑畫圓交PQ,MN有三點,所以有三個.當(dāng)以點B為圓心,AB為半徑畫圓,交PQ,MN有三點,所以有三個.所以共8個.故選D.點評:本題考查了等腰三角形的判定;解題的關(guān)鍵是要分情況而定,所以學(xué)生一定要思維嚴(yán)密,不可遺漏.3、C【解析】試題分析:對于反比例函數(shù)y=kx,當(dāng)k>0時,在每一個象限內(nèi),y隨x的增大而減小,根據(jù)題意可得:-1>-2,則y考點:反比例函數(shù)的性質(zhì).4、B【解析】試題分析:由于等腰三角形的一邊長3為底或為腰不能確定,故應(yīng)分兩種情況進(jìn)行討論:(3)當(dāng)3為腰時,其他兩條邊中必有一個為3,把x=3代入原方程可求出k的值,進(jìn)而求出方程的另一個根,再根據(jù)三角形的三邊關(guān)系判斷是否符合題意即可;(3)當(dāng)3為底時,則其他兩條邊相等,即方程有兩個相等的實數(shù)根,由△=0可求出k的值,再求出方程的兩個根進(jìn)行判斷即可.試題解析:分兩種情況:(3)當(dāng)其他兩條邊中有一個為3時,將x=3代入原方程,得:33-33×3+k=0解得:k=37將k=37代入原方程,得:x3-33x+37=0解得x=3或93,3,9不能組成三角形,不符合題意舍去;(3)當(dāng)3為底時,則其他兩邊相等,即△=0,此時:344-4k=0解得:k=3將k=3代入原方程,得:x3-33x+3=0解得:x=63,6,6能夠組成三角形,符合題意.故k的值為3.故選B.考點:3.等腰三角形的性質(zhì);3.一元二次方程的解.5、B【解析】分析:根據(jù)位似變換的性質(zhì)計算即可.詳解:點P(m,n)是線段AB上一點,以原點O為位似中心把△AOB放大到原來的兩倍,則點P的對應(yīng)點的坐標(biāo)為(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故選B.點睛:本題考查的是位似變換、坐標(biāo)與圖形的性質(zhì),在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或-k.6、D【解析】試題分析:此題考察一元二次方程的解法,觀察發(fā)現(xiàn)可以采用提公因式法來解答此題.原方程可化為:,因此或,所以.故選D.考點:一元二次方程的解法——因式分解法——提公因式法.7、B【解析】
由正數(shù)大于一切負(fù)數(shù),負(fù)數(shù)小于0,正數(shù)大于0,兩個負(fù)數(shù)絕對值大的反而小,把這四個數(shù)從小到大排列,即可求解.【詳解】解:∵0,-2,1,中,-2<0<1<,
∴其中最小的實數(shù)為-2;
故選:B.【點睛】本題考查了實數(shù)的大小比較,關(guān)鍵是掌握:正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于一切負(fù)數(shù),兩個負(fù)數(shù)絕對值大的反而小.8、A【解析】分析:連接OE1,OD1,OD2,如圖,根據(jù)正六邊形的性質(zhì)得∠E1OD1=60°,則△E1OD1為等邊三角形,再根據(jù)切線的性質(zhì)得OD2⊥E1D1,于是可得OD2=E1D1=×2,利用正六邊形的邊長等于它的半徑得到正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,依此規(guī)律可得正六邊形A11B11C11D11E11F11的邊長=()10×2,然后化簡即可.詳解:連接OE1,OD1,OD2,如圖,∵六邊形A1B1C1D1E1F1為正六邊形,∴∠E1OD1=60°,∴△E1OD1為等邊三角形,∵正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,∴OD2⊥E1D1,∴OD2=E1D1=×2,∴正六邊形A2B2C2D2E2F2的邊長=×2,同理可得正六邊形A3B3C3D3E3F3的邊長=()2×2,則正六邊形A11B11C11D11E11F11的邊長=()10×2=.故選A.點睛:本題考查了正多邊形與圓的關(guān)系:把一個圓分成n(n是大于2的自然數(shù))等份,依次連接各分點所得的多邊形是這個圓的內(nèi)接正多邊形,這個圓叫做這個正多邊形的外接圓.記住正六邊形的邊長等于它的半徑.9、B【解析】試題分析:如圖,延長DC到F,則∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.∴∠ACD=180°-∠ECF=140°.故選B.考點:1.平行線的性質(zhì);2.平角性質(zhì).10、B【解析】試題分析:科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>1時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).將13000用科學(xué)記數(shù)法表示為:1.3×1.故選B.考點:科學(xué)記數(shù)法—表示較大的數(shù)二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】
觀察已知數(shù)列得到一般性規(guī)律,寫出第20個數(shù)即可.【詳解】解:觀察數(shù)列得:第n個數(shù)為,則第20個數(shù)是.故答案為.【點睛】本題考查了規(guī)律型:數(shù)字的變化類,弄清題中的規(guī)律是解答本題的關(guān)鍵.12、【解析】
過點D作DF⊥BC于點F,由菱形的性質(zhì)可得BC=CD,AD∥BC,可證四邊形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函數(shù)的性質(zhì)可求k的值.【詳解】如圖,過點D作DF⊥BC于點F,∵四邊形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四邊形DEBF是矩形,∴DF=BE,DE=BF,∵點C的橫坐標(biāo)為5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,設(shè)點C(5,m),點D(1,m+3),∵反比例函數(shù)y=圖象過點C,D,∴5m=1×(m+3),∴m=,∴點C(5,),∴k=5×=,故答案為:【點睛】本題考查了反比例函數(shù)圖象點的坐標(biāo)特征,菱形的性質(zhì),勾股定理,求出DE的長度是本題的關(guān)鍵.13、1.【解析】
先根據(jù)概率公式得到2+x5+x=2【詳解】根據(jù)題意得2+x5+x解得x=4.故答案為:4.【點睛】本題考查了概率公式:隨機(jī)事件A的概率PA=事件14、1:1.【解析】試題分析:由DE∥BC,可得△ADE∽△ABC,根據(jù)相似三角形的面積之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考點:相似三角形的性質(zhì).15、-4<x<1【解析】將P(1,1)代入解析式y(tǒng)1=mx,先求出m的值為,將Q點縱坐標(biāo)y=1代入解析式y(tǒng)=x,求出y1=mx的橫坐標(biāo)x=-4,即可由圖直接求出不等式kx+b>mx>-1的解集為y1>y1>-1時,x的取值范圍為-4<x<1.
故答案為-4<x<1.
點睛:本題考查了一次函數(shù)與一元一次不等式,求出函數(shù)圖象的交點坐標(biāo)及函數(shù)與x軸的交點坐標(biāo)是解題的關(guān)鍵.16、【解析】
一般方法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.根據(jù)隨機(jī)事件概率大小的求法,找準(zhǔn)兩點:①符合條件的情況數(shù)目,②全部情況的總數(shù),二者的比值就是其發(fā)生的概率的大小.【詳解】∵不透明袋子中裝有7個球,其中有2個紅球、2個綠球和3個黑球,∴從袋子中隨機(jī)取出1個球,則它是黑球的概率是:故答案為:.【點睛】本題主要考查概率的求法與運(yùn)用,解決本題的關(guān)鍵是要熟練掌握概率的定義和求概率的公式.三、解答題(共8題,共72分)17、(1)見解析(2)5【解析】
解:(1)證明:如圖,連接,則.∵,∴.∵,∴四邊形是平行四邊形.∴.(2)連接,則.∵,,,∴,.∴.∴.設(shè),則.在中,有.∴.即.18、-1【解析】分析:根據(jù)零次冪、絕對值以及負(fù)指數(shù)次冪的計算法則求出各式的值,然后進(jìn)行求和得出答案.詳解:解:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1=1﹣3+(﹣1)+2=﹣1.點睛:本題主要考查的是實數(shù)的計算法則,屬于基礎(chǔ)題型.理解各種計算法則是解決這個問題的關(guān)鍵.19、詳見解析.【解析】
先證明△ADF≌△CDE,由此可得∠DAF=∠DCE,∠AFD=∠CED,再根據(jù)∠EAG=∠FCG,AE=CF,∠AEG=∠CFG可得△AEG≌△CFG,所以AG=CG.【詳解】證明:∵四邊形ABCD是正方形,∴AD=DC,∵E、F分別是AB、BC邊的中點,∴AE=ED=CF=DF.又∠D=∠D,∴△ADF≌△CDE(SAS).∴∠DAF=∠DCE,∠AFD=∠CED.∴∠AEG=∠CFG.在△AEG和△CFG中,∴△AEG≌△CFG(ASA).∴AG=CG.【點睛】本題主要考查正方形的性質(zhì)、全等三角形的判定和性質(zhì),關(guān)鍵是要靈活運(yùn)用全等三角形的判定方法.20、(1)直線的表達(dá)式為,雙曲線的表達(dá)式為;(2)①;②當(dāng)時,的大小不發(fā)生變化,的值為;③t的值為或.【解析】
(1)由點利用待定系數(shù)法可求出直線的表達(dá)式;再由直線的表達(dá)式求出點B的坐標(biāo),然后利用待定系數(shù)法即可求出雙曲線的表達(dá)式;(2)①先求出點C的橫坐標(biāo),再將其代入雙曲線的表達(dá)式求出點C的縱坐標(biāo),從而即可得出t的值;②如圖1(見解析),設(shè)直線AB交y軸于M,則,取CD的中點K,連接AK、BK.利用直角三角形的性質(zhì)證明A、D、B、C四點共圓,再根據(jù)圓周角定理可得,從而得出,即可解決問題;③如圖2(見解析),過點B作于M,先求出點D與點M重合的臨界位置時t的值,據(jù)此分和兩種情況討論:根據(jù)三點坐標(biāo)求出的長,再利用三角形相似的判定定理與性質(zhì)求出DM的長,最后在中,利用勾股定理即可得出答案.【詳解】(1)∵直線經(jīng)過點和∴將點代入得解得故直線的表達(dá)式為將點代入直線的表達(dá)式得解得∵雙曲線經(jīng)過點,解得故雙曲線的表達(dá)式為;(2)①軸,點A的坐標(biāo)為∴點C的橫坐標(biāo)為12將其代入雙曲線的表達(dá)式得∴C的縱坐標(biāo)為,即由題意得,解得故當(dāng)點C在雙曲線上時,t的值為;②當(dāng)時,的大小不發(fā)生變化,求解過程如下:若點D與點A重合由題意知,點C坐標(biāo)為由兩點距離公式得:由勾股定理得,即解得因此,在范圍內(nèi),點D與點A不重合,且在點A左側(cè)如圖1,設(shè)直線AB交y軸于M,取CD的中點K,連接AK、BK由(1)知,直線AB的表達(dá)式為令得,則,即點K為CD的中點,(直角三角形中,斜邊上的中線等于斜邊的一半)同理可得:A、D、B、C四點共圓,點K為圓心(圓周角定理);③過點B作于M由題意和②可知,點D在點A左側(cè),與點M重合是一個臨界位置此時,四邊形ACBD是矩形,則,即因此,分以下2種情況討論:如圖2,當(dāng)時,過點C作于N又,即由勾股定理得即解得或(不符題設(shè),舍去)當(dāng)時,同理可得:解得或(不符題設(shè),舍去)綜上所述,t的值為或.【點睛】本題考查反比例函數(shù)綜合題、銳角三角函數(shù)、相似三角形的判定和性質(zhì)、四點共圓、勾股定理等知識點,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造相似三角形解決問題.21、x<2.【解析】試題分析:由不等式性質(zhì)分別求出每一個不等式的解集,找出它們的公共部分即可.試題解析:2x+1由①得:x<3,由②得:x<2,∴不等式組的解集為:x<2.22、(1)CH=AB.;(2)成立,證明見解析;(3)【解析】
(1)首先根據(jù)全等三角形判定的方法,判斷出△ABF≌△CBE,即可判斷出∠1=∠2;然后根據(jù)EH⊥BF,∠BCE=90°,可得C、H兩點都在以BE為直徑的圓上,判斷出∠4=∠HBC,即可判斷出CH=BC,最后根據(jù)AB=BC,判斷出CH=AB即可.(2)首先根據(jù)全等三角形判定的方法,判斷出△ABF≌△CBE,即可判斷出∠1=∠2;然后根據(jù)EH⊥BF,∠BCE=90°,可得C、H兩點都在以BE為直徑的圓上,判斷出∠4=∠HBC,即可判斷出CH=BC,最后根據(jù)AB=BC,判斷出CH=AB即可.(3)首先根據(jù)三角形三邊的關(guān)系,可得CK<AC+AK,據(jù)此判斷出當(dāng)C、A、K三點共線時,CK的長最大;然后根據(jù)全等三角形判定的方法,判斷出△DFK≌△DEH,即可判斷出DK=DH,再根據(jù)全等三角形判定的方法,判斷出△DAK≌△DCH,即可判斷出AK=CH=AB;最后根據(jù)CK=AC+AK=AC+AB,求出線段CK長的最大值是多少即可.【詳解】解:(1)如圖1,連接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠BCD=∠ABC=90°,∵點E是DC的中點,DE=EC,∴點F是AD的中點,∴AF=FD,∴EC=AF,在△ABF和△CBE中,∴△ABF≌△CBE,∴∠1=∠2,∵EH⊥BF,∠BCE=90°,∴C、H兩點都在以BE為直徑的圓上,∴∠3=∠2,∴∠1=∠3,∵∠3+∠4=90°,∠1+∠HBC=90°,∴∠4=∠HBC,∴CH=BC,又∵AB=BC,∴CH=AB.(2)當(dāng)點E在DC邊上且不是DC的中點時,(1)中的結(jié)論CH=AB仍然成立.如圖2,連接BE,,在正方形ABCD中,AB=BC=CD=AD,∠A=∠B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 訂購仔豬合同協(xié)議書模板
- 2025年數(shù)據(jù)驅(qū)動測試試題及答案
- 退休反聘合同解除協(xié)議書
- 房屋換頂合同協(xié)議書
- 備戰(zhàn)2025年高考語文糾錯筆記系列專題07擴(kuò)展語句壓縮語段含解析
- 重點詞匯現(xiàn)代漢語考試試題及答案
- 所有權(quán)與責(zé)任在測試中的傳遞原理試題及答案
- 致勝策略2025年計算機(jī)二級VFP試題及答案
- 2025年計算機(jī)VFP考試學(xué)習(xí)理念試題及答案
- 2025年計算機(jī)二級JAVA復(fù)習(xí)與應(yīng)試的最佳方案及試題及答案
- 2024年海南省高考化學(xué)試卷真題(含答案解析)
- 奧數(shù)平均數(shù)應(yīng)用題100題(專項訓(xùn)練)-2024-2025學(xué)年四年級上冊數(shù)學(xué)人教版
- 二年級《道德與法治》下冊知識點
- 2024年四川省成都市中考?xì)v史試卷真題(含答案解析)
- 2024屆四川省廣元市旺蒼縣小升初考試數(shù)學(xué)試卷含解析
- MOOC 信號與系統(tǒng)-西安電子科技大學(xué) 中國大學(xué)慕課答案
- 公需科目2023年度數(shù)字經(jīng)濟(jì)與驅(qū)動發(fā)展考試題庫及答案
- 中學(xué)生英才計劃面試常見問題
- 壓力容器安全風(fēng)險管控清單(日管控、周排查、月調(diào)度)
- 中小學(xué)心理健康教育指導(dǎo)綱要
- 嬰幼兒尿布性皮炎護(hù)理
評論
0/150
提交評論