




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
濟寧市2025屆高一數(shù)學第二學期期末教學質量檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知α,β是兩個不同的平面,m,n是兩條不同的直線,給出下列命題:①若m∥α,m∥β,則α∥β②若m?α,n?α,m∥β,n∥β,則α∥β;③m?α,n?β,m、n是異面直線,那么n與α相交;④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.其中正確的命題是()A.①② B.②③ C.③④ D.④2.函數(shù)圖象向右平移個單位長度,所得圖象關于原點對稱,則在上的單調遞增區(qū)間為()A. B. C. D.3.已知函數(shù)f(x)=sin(ωx+φ)(其中ω>0,﹣π<φ<π),若該函數(shù)在區(qū)間()上有最大值而無最小值,且滿足f()+f()=0,則實數(shù)φ的取值范圍是()A.(,) B.(,) C.(,) D.(,)4.在中,角A,B,C所對的邊分別為a,b,c,,,,則等于()A. B. C. D.15.如圖,平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,則異面直線BD與CE所成的角為()A. B. C. D.6.在中,角的對邊分別是,若,則()A.5 B. C.4 D.37.下列選項正確的是()A.若,則B.若,則C.若,則D.若,則8.向量,若,則的值是()A. B. C. D.9.在下列結論中,正確的為()A.兩個有共同起點的單位向量,其終點必相同B.向量與向量的長度相等C.向量就是有向線段D.零向量是沒有方向的10.下圖來自古希臘數(shù)學家希波克拉底所研究的平面幾何圖形.此圖由兩個圓構成,O為大圓圓心,線段AB為小圓直徑.△AOB的三邊所圍成的區(qū)域記為I,黑色月牙部分記為Ⅱ,兩小月牙之和(斜線部分)部分記為Ⅲ.在整個圖形中隨機取一點,此點取自Ⅰ,Ⅱ,Ⅲ的概率分別記為p1,p2,p3,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若、為單位向量,且,則向量、的夾角為_______.(用反三角函數(shù)值表示)12.已知直線是函數(shù)(其中)圖象的一條對稱軸,則的值為________.13.已知函數(shù),若,則__________.14.已知向量,向量,若與垂直,則__________.15.某校選修“營養(yǎng)與衛(wèi)生”課程的學生中,高一年級有30名,高二年級有40名.現(xiàn)用分層抽樣的方法從這70名學生中抽取一個樣本,已知在高二年級的學生中抽取了8名,則在該校高一年級的學生中應抽取的人數(shù)為________.16.若,則實數(shù)的值為_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.(1分)設數(shù)列{an}是公比為正數(shù)的等比數(shù)列,a1=2,a3﹣a2=1.(1)求數(shù)列{an}的通項公式;(2)設數(shù)列{bn}是首項為1,公差為2的等差數(shù)列,求數(shù)列{an+bn}的前n項和Sn.18.等差數(shù)列的前項和為,求數(shù)列前項和.19.已知函數(shù)滿足.(1)若,對任意都有,求的取值范圍;(2)是否存在實數(shù),,使得不等式對一切實數(shù)恒成立?若存在,請求出,,使;若不存在,請說明理由.20.已知和的交點為.(1)求經(jīng)過點且與直線垂直的直線的方程(2)直線經(jīng)過點與軸、軸交于、兩點,且為線段的中點,求的面積.21.已知圓過點,,圓心在直線上,是直線上任意一點.(1)求圓的方程;(2)過點向圓引兩條切線,切點分別為,,求四邊形的面積的最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
利用平面與平面垂直和平行的判定和性質,直線與平面平行的判斷,對選項逐一判斷即可.【詳解】①若m∥α,m∥β,則α∥β或α與β相交,錯誤命題;②若m?α,n?α,m∥β,n∥β,則α∥β或α與β相交.錯誤的命題;③m?α,n?β,m、n是異面直線,那么n與α相交,也可能n∥α,是錯誤命題;④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.是正確的命題.故選D.【點睛】本題考查平面與平面的位置關系,直線與平面的位置關系,考查空間想象力,屬于中檔題.2、A【解析】
根據(jù)三角函數(shù)的圖象平移關系結合函數(shù)關于原點對稱的性質求出的值,結合函數(shù)的單調性進行求解即可.【詳解】函數(shù)圖象向右平移個單位長度,得到,所得圖象關于原點對稱,則,得,,∵,∴當時,,則,由,,得,,即函數(shù)的單調遞增區(qū)間為,,∵,∴當時,,即,即在上的單調遞增區(qū)間為,故選:A.【點睛】本題主要考查三角函數(shù)的圖象和性質,求出函數(shù)的解析式結合三角函數(shù)的單調性是解決本題的關鍵.3、D【解析】
根據(jù)題意可畫圖分析確定的周期,再列出在區(qū)間端點滿足的關系式求解即可.【詳解】由題該函數(shù)在區(qū)間()上有最大值而無最小值可畫出簡圖,又,故周期滿足.故.故.又,故.故選:D【點睛】本題主要考查了正弦型函數(shù)圖像的綜合運用,需要根據(jù)題意列出端點處的函數(shù)對應的表達式求解.屬于中等題型.4、D【解析】
根據(jù)題意,由正弦定理得,再把,,代入求解.【詳解】由正弦定理,得,所以.故選:D【點睛】本題主要考查了正弦定理的應用,還考查了運算求解的能力,屬于基礎題.5、C【解析】
以D為原點,DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標系,利用向量法能求出異面直線BD與CE所成的角.【詳解】∵平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,∴以D為原點,DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標系,設AB=1,則B(1,1,0),D(0,0,0),C(0,1,0),E(0,0,1),(﹣1,﹣1,0),(0,﹣1,1),設異面直線BD與CE所成的角為θ,則cosθ,∴θ.∴異面直線BD與CE所成的角為.故選:C.【點評】本題考查異面直線所成角的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是基礎題.6、D【解析】
已知兩邊及夾角,可利用余弦定理求出.【詳解】由余弦定理可得:,解得.故選D.【點睛】本題主要考查利用正余弦定理解三角形,注意根據(jù)條件選用合適的定理解決.7、B【解析】
通過逐一判斷ABCD選項,得到答案.【詳解】對于A選項,若,代入,,故A錯誤;對于C選項,等價于,故C錯誤;對于D選項,若,則,故D錯誤,所以答案選B.【點睛】本題主要考查不等式的相關性質,難度不大.8、C【解析】
由平面向量的坐標運算與共線定理,列方程求出λ的值.【詳解】向量=(-4,5),=(λ,1),則-=(-4-λ,4),又(-)∥,所以-4-λ-4λ=0,解得λ=-.故選C.【點睛】本題考查了平面向量的坐標運算與共線定理應用問題,是基礎題.9、B【解析】
逐一分析選項,得到答案.【詳解】A.單位向量的方向任意,所以當起點相同時,終點在以起點為圓心的單位圓上,終點不一定相同,所以選項不正確;B.向量與向量是相反向量,方向相反,長度相等,所以選項正確;C.向量是既有大小,又有方向的向量,可以用有向線段表示,但不能說向量就是有向線段,所以選項不正確;D.規(guī)定零向量的方向任意,而不是沒有方向,所以選項不正確.故選B.【點睛】本題考查了向量的基本概念,屬于基礎題型.10、D【解析】
設OA=1,則AB,分別求出三個區(qū)域的面積,由測度比是面積比得答案.【詳解】設OA=1,則AB,,以AB中點為圓心的半圓的面積為,以O為圓心的大圓面積的四分之一為,以AB為弦的大圓的劣弧所對弓形的面積為π﹣1,黑色月牙部分的面積為π﹣(π﹣1)=1,圖Ⅲ部分的面積為π﹣1.設整個圖形的面積為S,則p1,p1,p3.∴p1=p1>p3,故選D.【點睛】本題考查幾何概型概率的求法,考查數(shù)形結合的解題思想方法,正確求出各部分面積是關鍵,是中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
設向量、的夾角為,利用平面向量數(shù)量積的運算律與定義計算出的值,利用反三角函數(shù)可求出的值.【詳解】設向量、的夾角為,由平面向量數(shù)量積的運算律與定義得,,,因此,向量、的夾角為,故答案為.【點睛】本題考查利用平面向量的數(shù)量積計算平面向量所成的夾角,解題的關鍵就是利用平面向量數(shù)量積的定義和運算律,考查運算求解能力,屬于中等題.12、【解析】
根據(jù)正弦函數(shù)圖象的對稱性可得,由此可得答案.【詳解】依題意得,所以,即,因為,所以或,故答案為:【點睛】本題考查了正弦函數(shù)圖象的對稱軸,屬于基礎題.13、【解析】
由三角函數(shù)的輔助角公式化簡,關鍵需得出輔助角的正切值,再由函數(shù)的最大值求解.【詳解】由三角函數(shù)的輔助公式得(其中),因為所以,所以,所以,,所以,故填:【點睛】本題考查三角函數(shù)的輔助角公式,屬于基礎題.14、;【解析】
由計算可得.【詳解】,∵與垂直,∴,.故答案為-1.【點睛】本題考查向量垂直的坐標運算.由向量垂直得其數(shù)量積為0,本題屬于基礎題.15、6【解析】
利用分層抽樣的定義求解.【詳解】設從高一年級的學生中抽取x名,由分層抽樣的知識可知,解得x=6.故答案為6.【點睛】本題主要考查分層抽樣,意在考查學生對該知識的掌握水平和分析推理能力.16、【解析】
由得,代入方程即可求解.【詳解】,.,,,即,故填.【點睛】本題主要考查了反三角函數(shù)的定義及運算性質,屬于中檔題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)an=2×【解析】試題分析:(1)設出等比數(shù)列{an}的公比q,利用條件a1=4,a3﹣a4(4)數(shù)列{an+bn}是由一個等差數(shù)列和一個等比數(shù)列對應項相加得來的,所以可以采用拆項分組的方法,轉化為等差數(shù)列、等比數(shù)列的前n項和問題來解決.試題解析:解:(1)設數(shù)列{an}的公比為q,由a1=4,a3﹣a4=1,得:4q4﹣4q﹣1=4,即q4﹣q﹣6=4.解得q=3或q=﹣4,∵q>4,∴q=﹣4不合題意,舍去,故q=3.∴an=4×3n﹣1;(4)∵數(shù)列{bn}是首項b1=1,公差d=4的等差數(shù)列,∴bn=4n﹣1,∴Sn=(a1+a4++an)+(b1+b4++bn)=+=3n﹣1+n4.考點:等差數(shù)列與等比數(shù)列.18、【解析】
由已知條件利用等差數(shù)列前項和公式求出公差和首項,由此能求出,且,當時,,當時,?!驹斀狻拷獾?,設從第項開始大于零,則,即當時,當時,綜上有【點睛】本題考查數(shù)列的前項和的求法,是中檔題,注意等差數(shù)列的函數(shù)性質的運用。19、(1)(2)存在,使不等式恒成立,詳見解析.【解析】
(1)由知函數(shù)關于對稱,求出后,通過構造函數(shù)求出;(2)利用不等式的兩邊夾定理,令,得,結合已知條件,解出;然后設存在實數(shù),,命題成立,運用根的判別式建立關于實數(shù)的不等式組,解得.【詳解】(1)由得此時,,構造函數(shù),.即的取值范圍是.(2)由對一切實數(shù)恒成立,得由得由得恒成立,也即,此時,.把,.代入,不等式也恒成立,所以,.【點睛】本題第(1)問,常用“反客為主法”,即把參數(shù)當成主元,而把看成參數(shù);第(2)問,不等式對任意實數(shù)恒成立,常用賦值法切入問題.20、(1);(2)2【解析】
(1)聯(lián)立兩條直線的方程,解方程組求得點坐標,根據(jù)的斜率求得與其垂直直線的斜率,根據(jù)點斜式求得所求直線方程.(2)根據(jù)(1)中點的坐標以及為中點這一條件,求得兩點的坐標,進而求得三角形的面積.【詳解】解:(1)聯(lián)立,解得交點的坐標為,∵與垂直,∴的斜率,∴的方程為,即.(2)∵為的中點,已知,,即,∴【點睛】本小題主要考查兩條直線交點坐標的求法,考查兩條直線垂直斜率的關系,考查直線的點斜式方程,考查三角形的面積公式以及中點坐標,屬于基礎題.21、(1)(2)【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- (高清版)DB62∕T 2184-2024 合作豬選育技術規(guī)程
- 2025年中國漁竿行業(yè)市場規(guī)模調研及投資前景研究分析報告
- 2025年中國養(yǎng)老生態(tài)園行業(yè)市場規(guī)模調研及投資前景研究分析報告
- 2025年中國消防水泵行業(yè)市場前景預測及投資價值評估分析報告
- CSCO惡性血液病診療指南(2025)解讀
- 徐州市中小學教學研究室高一物理向心加速度教案
- 2025年刮泥機項目規(guī)劃申請報告
- 2025年中小學教師編制考試教育政策法規(guī)模擬試題及答案(共三套)
- 國際貿易管制法第八章
- 全市志愿者工作計劃
- 地方低空經(jīng)濟平臺建設指南白皮書
- 心血管-腎臟-代謝綜合征患者的綜合管理中國專家共識2025解讀
- 婚慶合作入股協(xié)議書
- 學院“十五五”大學文化建設規(guī)劃
- 2025年陜西省西安市西咸新區(qū)中考二模語文試題(原卷版+解析版)
- 安全生產(chǎn)管理和培訓制度
- 2025山東濟南先行投資集團有限責任公司及權屬公司社會招聘169人筆試參考題庫附帶答案詳解
- 2024年高考化學試卷(山東)(解析卷)
- 2025新款上海勞動合同樣本
- 2025中國工商銀行總行本部秋季校園招聘100人易考易錯模擬試題(共500題)試卷后附參考答案
- 《濾泡狀甲狀腺癌》教學課件
評論
0/150
提交評論