




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
杭州市錦繡育才教育科技集團中考數學押題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,平行四邊形ABCD的頂點A、B、D在⊙O上,頂點C在⊙O直徑BE上,連結AE,若∠E=36°,則∠ADC的度數是()A.44° B.53° C.72° D.54°2.已知:如圖,在扇形中,,半徑,將扇形沿過點的直線折疊,點恰好落在弧上的點處,折痕交于點,則弧的長為()A. B. C. D.3.下列各數中,為無理數的是()A. B. C. D.4.如圖,內接于,若,則A. B. C. D.5.如圖,在熱氣球C處測得地面A、B兩點的俯角分別為30°、45°,熱氣球C的高度CD為100米,點A、D、B在同一直線上,則AB兩點的距離是()A.200米 B.200米 C.220米 D.100米6.下列二次根式,最簡二次根式是()A.8 B.12 C.5 D.7.如圖,將一副三角板如此擺放,使得BO和CD平行,則∠AOD的度數為()A.10° B.15° C.20° D.25°8.如圖,是由一個圓柱體和一個長方體組成的幾何體,其主視圖是()A. B. C. D.9.的一個有理化因式是()A. B. C. D.10.-3的倒數是()A.3 B.13 C.-1二、填空題(本大題共6個小題,每小題3分,共18分)11.如果,那么______.12.已知線段AB=2cm,點C在線段AB上,且AC2=BC·AB,則AC的長___________cm.13.如圖,點A在雙曲線y=的第一象限的那一支上,AB垂直于y軸與點B,點C在x軸正半軸上,且OC=2AB,點E在線段AC上,且AE=3EC,點D為OB的中點,若△ADE的面積為3,則k的值為_____.14.如圖,A、D是⊙O上的兩個點,BC是直徑,若∠D=40°,則∠OAC=____度.15.如圖,⊙O的直徑CD垂直于AB,∠AOC=48°,則∠BDC=度.16.如圖的三角形紙片中,AB=8cm,BC=6cm,AC=5cm.沿過點B的直線折疊三角形,使點C落在AB邊的點E處,折痕為BD.則△AED的周長為____cm.三、解答題(共8題,共72分)17.(8分)如圖1,AB為半圓O的直徑,半徑的長為4cm,點C為半圓上一動點,過點C作CE⊥AB,垂足為點E,點D為弧AC的中點,連接DE,如果DE=2OE,求線段AE的長.小何根據學習函數的經驗,將此問題轉化為函數問題解決.小華假設AE的長度為xcm,線段DE的長度為ycm.(當點C與點A重合時,AE的長度為0cm),對函數y隨自變量x的變化而變化的規(guī)律進行探究.下面是小何的探究過程,請補充完整:(說明:相關數據保留一位小數).(1)通過取點、畫圖、測量,得到了x與y的幾組值,如下表:x/cm012345678y/cm01.62.53.34.04.75.85.7當x=6cm時,請你在圖中幫助小何完成作圖,并使用刻度尺度量此時線段DE的長度,填寫在表格空白處:(2)在圖2中建立平面直角坐標系,描出補全后的表中各組對應值為坐標的點,畫出該函數的圖象;(3)結合畫出的函數圖象解決問題,當DE=2OE時,AE的長度約為cm.18.(8分)如圖,已知一次函數的圖象與反比例函數的圖象交于點,與軸、軸交于兩點,過作垂直于軸于點.已知.(1)求一次函數和反比例函數的表達式;(2)觀察圖象:當時,比較.19.(8分)如圖1,在平面直角坐標系中,直線y=﹣x+1與拋物線y=ax2+bx+c(a≠0)相交于點A(1,0)和點D(﹣4,5),并與y軸交于點C,拋物線的對稱軸為直線x=﹣1,且拋物線與x軸交于另一點B.(1)求該拋物線的函數表達式;(2)若點E是直線下方拋物線上的一個動點,求出△ACE面積的最大值;(3)如圖2,若點M是直線x=﹣1的一點,點N在拋物線上,以點A,D,M,N為頂點的四邊形能否成為平行四邊形?若能,請直接寫出點M的坐標;若不能,請說明理由.20.(8分)解方程:2(x-3)=3x(x-3).21.(8分)計算:(1)(2)2﹣|﹣4|+3﹣1×6+20;(2).22.(10分)對于平面上兩點A,B,給出如下定義:以點A或B為圓心,AB長為半徑的圓稱為點A,B的“確定圓”.如圖為點A,B的“確定圓”的示意圖.(1)已知點A的坐標為(-1,0),點B的坐標為(3,3),則點A,B的“確定圓”的面積為______;(2)已知點A的坐標為(0,0),若直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積為9π,求點B的坐標;(3)已知點A在以P(m,0)為圓心,以1為半徑的圓上,點B在直線上,若要使所有點A,B的“確定圓”的面積都不小于9π,直接寫出m的取值范圍.23.(12分)如圖1,在平面直角坐標系xOy中,拋物線C:y=ax2+bx+c與x軸相交于A,B兩點,頂點為D(0,4),AB=4,設點F(m,0)是x軸的正半軸上一點,將拋物線C繞點F旋轉180°,得到新的拋物線C′.(1)求拋物線C的函數表達式;(2)若拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,求m的取值范圍.(3)如圖2,P是第一象限內拋物線C上一點,它到兩坐標軸的距離相等,點P在拋物線C′上的對應點P′,設M是C上的動點,N是C′上的動點,試探究四邊形PMP′N能否成為正方形?若能,求出m的值;若不能,請說明理由.24.如圖,拋物線l:y=(x﹣h)2﹣2與x軸交于A,B兩點(點A在點B的左側),將拋物線ι在x軸下方部分沿軸翻折,x軸上方的圖象保持不變,就組成了函數?的圖象.(1)若點A的坐標為(1,0).①求拋物線l的表達式,并直接寫出當x為何值時,函數?的值y隨x的增大而增大;②如圖2,若過A點的直線交函數?的圖象于另外兩點P,Q,且S△ABQ=2S△ABP,求點P的坐標;(2)當2<x<3時,若函數f的值隨x的增大而增大,直接寫出h的取值范圍.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據直徑所對的圓周角為直角可得∠BAE=90°,再根據直角三角形的性質和平行四邊形的性質可得解.【詳解】根據直徑所對的圓周角為直角可得∠BAE=90°,根據∠E=36°可得∠B=54°,根據平行四邊形的性質可得∠ADC=∠B=54°.故選D【點睛】本題考查了平行四邊形的性質、圓的基本性質.2、D【解析】
如圖,連接OD.根據折疊的性質、圓的性質推知△ODB是等邊三角形,則易求∠AOD=110°-∠DOB=50°;然后由弧長公式弧長的公式來求的長【詳解】解:如圖,連接OD.解:如圖,連接OD.
根據折疊的性質知,OB=DB.
又∵OD=OB,
∴OD=OB=DB,即△ODB是等邊三角形,
∴∠DOB=60°.
∵∠AOB=110°,
∴∠AOD=∠AOB-∠DOB=50°,
∴的長為=5π.
故選D.【點睛】本題考查了弧長的計算,翻折變換(折疊問題).折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等.所以由折疊的性質推知△ODB是等邊三角形是解答此題的關鍵之處.3、D【解析】A.=2,是有理數;B.=2,是有理數;C.,是有理數;D.,是無理數,故選D.4、B【解析】
根據圓周角定理求出,根據三角形內角和定理計算即可.【詳解】解:由圓周角定理得,,,,故選:B.【點睛】本題考查的是三角形的外接圓與外心,掌握圓周角定理、等腰三角形的性質、三角形內角和定理是解題的關鍵.5、D【解析】
在熱氣球C處測得地面B點的俯角分別為45°,BD=CD=100米,再在Rt△ACD中求出AD的長,據此即可求出AB的長.【詳解】∵在熱氣球C處測得地面B點的俯角分別為45°,∴BD=CD=100米,∵在熱氣球C處測得地面A點的俯角分別為30°,∴AC=2×100=200米,∴AD==100米,∴AB=AD+BD=100+100=100(1+)米,故選D.【點睛】本題考查了解直角三角形的應用--仰角、俯角問題,要求學生能借助仰角構造直角三角形并解直角三角形.6、C【解析】
檢查最簡二次根式的兩個條件是否同時滿足,同時滿足的就是最簡二次根式,否則就不是.【詳解】A、被開方數含開的盡的因數,故A不符合題意;B、被開方數含分母,故B不符合題意;C、被開方數不含分母;被開方數不含能開得盡方的因數或因式,故C符合題意;D、被開方數含能開得盡方的因數或因式,故D不符合題意.故選C.【點睛】本題考查最簡二次根式的定義,最簡二次根式必須滿足兩個條件:被開方數不含分母;被開方數不含能開得盡方的因數或因式.7、B【解析】
根據題意可知,∠AOB=∠ABO=45°,∠DOC=30°,再根據平行線的性質即可解答【詳解】根據題意可知∠AOB=∠ABO=45°,∠DOC=30°∵BO∥CD∴∠BOC=∠DCO=90°∴∠AOD=∠BOC-∠AOB-∠DOC=90°-45°-30°=15°故選B【點睛】此題考查三角形內角和,平行線的性質,解題關鍵在于利用平行線的性質得到角相等8、B【解析】試題分析:長方體的主視圖為矩形,圓柱的主視圖為矩形,根據立體圖形可得:主視圖的上面和下面各為一個矩形,且下面矩形的長比上面矩形的長要長一點,兩個矩形的寬一樣大小.考點:三視圖.9、B【解析】
找出原式的一個有理化因式即可.【詳解】的一個有理化因式是,故選B.【點睛】此題考查了分母有理化,熟練掌握有理化因式的取法是解本題的關鍵.10、C【解析】
由互為倒數的兩數之積為1,即可求解.【詳解】∵-3×-13=1,∴故選C二、填空題(本大題共6個小題,每小題3分,共18分)11、;【解析】
先對等式進行轉換,再求解.【詳解】∵∴3x=5x-5y∴2x=5y∴【點睛】本題考查的是分式,熟練掌握分式是解題的關鍵.12、【解析】
設AC=x,則BC=2-x,根據AC2=BC·AB列方程求解即可.【詳解】解:設AC=x,則BC=2-x,根據AC2=BC·AB可得x2=2(2-x),解得:x=或(舍去).故答案為.【點睛】本題考查了黃金分割的應用,關鍵是明確黃金分割所涉及的線段的比.13、.【解析】
由AE=3EC,△ADE的面積為3,可知△ADC的面積為4,再根據點D為OB的中點,得到△ADC的面積為梯形BOCA面積的一半,即梯形BOCA的面積為8,設A(x,),從而表示出梯形BOCA的面積關于k的等式,求解即可.【詳解】如圖,連接DC,∵AE=3EC,△ADE的面積為3,∴△CDE的面積為1.∴△ADC的面積為4.∵點A在雙曲線y=的第一象限的那一支上,∴設A點坐標為(x,).∵OC=2AB,∴OC=2x.∵點D為OB的中點,∴△ADC的面積為梯形BOCA面積的一半,∴梯形BOCA的面積為8.∴梯形BOCA的面積=,解得.【點睛】反比例函數綜合題,曲線上點的坐標與方程的關系,相似三角形的判定和性質,同底三角形面積的計算,梯形中位線的性質.14、50【解析】
根據BC是直徑得出∠B=∠D=40°,∠BAC=90°,再根據半徑相等所對應的角相等求出∠BAO,在直角三角形BAC中即可求出∠OAC【詳解】∵BC是直徑,∠D=40°,∴∠B=∠D=40°,∠BAC=90°.∵OA=OB,∴∠BAO=∠B=40°,∴∠OAC=∠BAC﹣∠BAO=90°﹣40°=50°.故答案為:50【點睛】本題考查了圓的基本概念、角的概念及其計算等腰三角形以及三角形的基本概念,熟悉掌握概念是解題的關鍵15、20【解析】解:連接OB,∵⊙O的直徑CD垂直于AB,∴=,∴∠BOC=∠AOC=40°,∴∠BDC=∠AOC=×40°=20°16、7【解析】
根據翻折變換的性質可得BE=BC,DE=CD,然后求出AE,再求出△ADE的周長=AC+AE.【詳解】∵折疊這個三角形點C落在AB邊上的點E處,折痕為BD,∴BE=BC,DE=CD,∴AE=AB-BE=AB-BC=8-6=2cm,∴△ADE的周長=AD+DE+AE,=AD+CD+AE,=AC+AE,=5+2,=7cm.故答案為:7.【點睛】本題考查了翻折變換的性質,翻折前后對應邊相等,對應角相等.三、解答題(共8題,共72分)17、(1)5.3(2)見解析(3)2.5或6.9【解析】
(1)(2)按照題意取點、畫圖、測量即可.(3)中需要將DE=2OE轉換為y與x的函數關系,注意DE為非負數,函數為分段函數.【詳解】(1)根據題意取點、畫圖、測量的x=6時,y=5.3故答案為5.3(2)根據數據表格畫圖象得(3)當DE=2OE時,問題可以轉化為折線y=與(2)中圖象的交點經測量得x=2.5或6.9時DE=2OE.故答案為2.5或6.9【點睛】動點問題的函數圖象探究題,考查了函數圖象的畫法,應用了數形結合思想和轉化的數學思想.18、(1);(2)【解析】
(1)由一次函數的解析式可得出D點坐標,從而得出OD長度,再由△ODC與△BAC相似及AB與BC的長度得出C、B、A的坐標,進而算出一次函數與反比例函數的解析式;
(2)以A點為分界點,直接觀察函數圖象的高低即可知道答案.【詳解】解:(1)對于一次函數y=kx-2,令x=0,則y=-2,即D(0,-2),
∴OD=2,
∵AB⊥x軸于B,
∴,
∵AB=1,BC=2,
∴OC=4,OB=6,
∴C(4,0),A(6,1)
將C點坐標代入y=kx-2得4k-2=0,
∴k=,
∴一次函數解析式為y=x-2;
將A點坐標代入反比例函數解析式得m=6,
∴反比例函數解析式為y=;
(2)由函數圖象可知:
當0<x<6時,y1<y2;
當x=6時,y1=y2;
當x>6時,y1>y2;【點睛】本題考查了反比例函數與一次函數的交點問題.熟悉函數圖象上點的坐標特征和待定系數法解函數解析式的方法是解答本題的關鍵,同時注意對數形結合思想的認識和掌握.19、(1)y=x2+2x﹣3;(2);(3)詳見解析.【解析】試題分析:(1)先利用拋物線的對稱性確定出點B的坐標,然后設拋物線的解析式為y=a(x+3)(x-1),將點D的坐標代入求得a的值即可;(2)過點E作EF∥y軸,交AD與點F,過點C作CH⊥EF,垂足為H.設點E(m,m2+2m-3),則F(m,-m+1),則EF=-m2-3m+4,然后依據△ACE的面積=△EFA的面積-△EFC的面積列出三角形的面積與m的函數關系式,然后利用二次函數的性質求得△ACE的最大值即可;(3)當AD為平行四邊形的對角線時.設點M的坐標為(-1,a),點N的坐標為(x,y),利用平行四邊形對角線互相平分的性質可求得x的值,然后將x=-2代入求得對應的y值,然后依據=,可求得a的值;當AD為平行四邊形的邊時.設點M的坐標為(-1,a).則點N的坐標為(-6,a+5)或(4,a-5),將點N的坐標代入拋物線的解析式可求得a的值.試題解析:(1)∴A(1,0),拋物線的對稱軸為直線x=-1,∴B(-3,0),設拋物線的表達式為y=a(x+3)(x-1),將點D(-4,5)代入,得5a=5,解得a=1,∴拋物線的表達式為y=x2+2x-3;(2)過點E作EF∥y軸,交AD與點F,交x軸于點G,過點C作CH⊥EF,垂足為H.設點E(m,m2+2m-3),則F(m,-m+1).∴EF=-m+1-m2-2m+3=-m2-3m+4.∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=-(m+)2+.∴△ACE的面積的最大值為;(3)當AD為平行四邊形的對角線時:設點M的坐標為(-1,a),點N的坐標為(x,y).∴平行四邊形的對角線互相平分,∴=,=,解得x=-2,y=5-a,將點N的坐標代入拋物線的表達式,得5-a=-3,解得a=8,∴點M的坐標為(-1,8),當AD為平行四邊形的邊時:設點M的坐標為(-1,a),則點N的坐標為(-6,a+5)或(4,a-5),∴將x=-6,y=a+5代入拋物線的表達式,得a+5=36-12-3,解得a=16,∴M(-1,16),將x=4,y=a-5代入拋物線的表達式,得a-5=16+8-3,解得a=26,∴M(-1,26),綜上所述,當點M的坐標為(-1,26)或(-1,16)或(-1,8)時,以點A,D,M,N為頂點的四邊形能成為平行四邊形.20、.【解析】
先進行移項,在利用因式分解法即可求出答案.【詳解】,移項得:,整理得:,或,解得:或.【點睛】本題考查了解一元一次方程-因式分解,熟練掌握因式分解的技巧是本題解題的關鍵.21、(1)1;(2).【解析】
(1)先計算乘方、絕對值、負整數指數冪和零指數冪,再計算乘法,最后計算加減運算可得;(2)先將分子、分母因式分解,再計算乘法,最后計算減法即可得.【詳解】(1)原式=8-4+×6+1=8-4+2+1=1.(2)原式===.【點睛】本題主要考查實數和分式的混合運算,解題的關鍵是掌握絕對值性質、負整數指數冪、零指數冪及分式混合運算順序和運算法則.22、(1)25π;(2)點B的坐標為或;(3)m≤-5或m≥2【解析】
(1)根據勾股定理,可得AB的長,根據圓的面積公式,可得答案;(2)根據確定圓,可得l與⊙A相切,根據圓的面積,可得AB的長為3,根據等腰直角三角形的性質,可得,可得答案;(3)根據圓心與直線垂直時圓心到直線的距離最短,根據確定圓的面積,可得PB的長,再根據30°的直角邊等于斜邊的一半,可得CA的長.【詳解】(1)(1)∵A的坐標為(?1,0),B的坐標為(3,3),∴AB==5,根據題意得點A,B的“確定圓”半徑為5,∴S圓=π×52=25π.故答案為25π;(2)∵直線y=x+b上只存在一個點B,使得點A,B的“確定圓”的面積為9π,∴⊙A的半徑AB=3且直線y=x+b與⊙A相切于點B,如圖,∴AB⊥CD,∠DCA=45°.,①當b>0時,則點B在第二象限.過點B作BE⊥x軸于點E,∵在Rt△BEA中,∠BAE=45°,AB=3,∴.∴.②當b<0時,則點B'在第四象限.同理可得.綜上所述,點B的坐標為或.(3)如圖2,,直線當y=0時,x=3,即C(3,0).∵tan∠BCP=,∴∠BCP=30°,∴PC=2PB.P到直線的距離最小是PB=4,∴PC=1.3-1=-5,P1(-5,0),3+1=2,P(2,0),當m≤-5或m≥2時,PD的距離大于或等于4,點A,B的“確定圓”的面積都不小于9π.點A,B的“確定圓”的面積都不小于9π,m的范圍是m≤-5或m≥2.【點睛】本題考查了一次函數綜合題,解(1)的關鍵是利用勾股定理得出AB的長;解(2)的關鍵是等腰直角三角形的性質得出;解(3)的關鍵是利用30°的直角邊等于斜邊的一半得出PC=2PB.23、(1);(2)2<m<;(1)m=6或m=﹣1.【解析】
(1)由題意拋物線的頂點C(0,4),A(,0),設拋物線的解析式為,把A(,0)代入可得a=,由此即可解決問題;(2)由題意拋物線C′的頂點坐標為(2m,﹣4),設拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,則有,解不等式組即可解決問題;(1)情形1,四邊形PMP′N能成為正方形.作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,推出PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,可得M(m+2,m﹣2),理由待定系數法即可解決問題;情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),利用待定系數法即可解決問題.【詳解】(1)由題意拋物線的頂點C(0,4),A(,0),設拋物線的解析式為,把A(,0)代入可得a=,∴拋物線C的函數表達式為.(2)由題意拋物線C′的頂點坐標為(2m,﹣4),設拋物線C′的解析式為,由,消去y得到,由題意,拋物線C′與拋物線C在y軸的右側有兩個不同的公共點,則有,解得2<m<,∴滿足條件的m的取值范圍為2<m<.(1)結論:四邊形PMP′N能成為正方形.理由:1情形1,如圖,作PE⊥x軸于E,MH⊥x軸于H.由題意易知P(2,2),當△PFM是等腰直角三角形時,四邊形PMP′N是正方形,∴PF=FM,∠PFM=90°,易證△PFE≌△FMH,可得PE=FH=2,EF=HM=2﹣m,∴M(m+2,m﹣2),∵點M在上,∴,解得m=﹣1或﹣﹣1(舍棄),∴m=﹣1時,四邊形PMP′N是正方形.情形2,如圖,四邊形PMP′N是正方形,同法可得M(m﹣2,2﹣m),把M(m﹣2,2﹣m)代入中,,解得m=6或0(舍棄),∴m=6時,四邊形PMP′N是正方形.綜上所述:m=6或m=﹣1時,四邊形PMP′N是正方形.24、(1)①當1<x<3或x>5
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 交互式白板在教學中的應用與發(fā)展
- 數據驅動的教育心理學研究進展
- 個性化教育技術在課程中的應用分析
- 教育技術助力提升辦公效率的方法與案例
- 教育游戲化的社會影響及價值體現(xiàn)
- 智慧安防技術在校園應急管理中的應用
- 中國城市公交行業(yè)發(fā)展分析及發(fā)展前景與投資研究報告2025-2028版
- 中國休閑手提掛包行業(yè)發(fā)展現(xiàn)狀及發(fā)展趨勢與投資風險分析2025-2028版
- 中國T型牙刷行業(yè)發(fā)展現(xiàn)狀及發(fā)展趨勢與投資風險分析2025-2028版
- 2025年中國隱形防蚊紗窗行業(yè)投資前景及策略咨詢研究報告
- 年產20萬噸廢紙脫墨新聞紙造紙車間設計
- 金融系統(tǒng)反洗錢考試題庫(含答案)
- 甘肅省張掖市2023年中考地理真題試題(含解析)
- 人教小學數學五年級下冊綜合與實踐《怎樣通知最快》示范公開課教學課件
- 脫不花三十天溝通訓練營
- 2023年湖南常德中考語文真題及答案
- “滾球法”計算接閃器保護范圍
- 生產專案持續(xù)改善工作匯報
- 2022年南通如皋市醫(yī)療系統(tǒng)事業(yè)編制鄉(xiāng)村醫(yī)生招聘筆試試題及答案解析
- SB/T 10347-2017糖果壓片糖果
- GB/T 7689.2-2013增強材料機織物試驗方法第2部分:經、緯密度的測定
評論
0/150
提交評論