




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣西賀州市昭平縣中考數學模擬預測題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖所示,在長為8cm,寬為6cm的矩形中,截去一個矩形(圖中陰影部分),如果剩下的矩形與原矩形相似,那么剩下矩形的面積是()A.28cm2 B.27cm2 C.21cm2 D.20cm22.如圖,BC是⊙O的直徑,A是⊙O上的一點,∠B=58°,則∠OAC的度數是()A.32° B.30° C.38° D.58°3.如圖,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,則∠BCE等于()A.40° B.70° C.60° D.50°4.如圖是二次函數y=ax2+bx+c(a,b,c是常數,a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數);⑤當﹣1<x<3時,y>0,其中正確的是()A.①②④ B.①②⑤ C.②③④ D.③④⑤5.點A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函數的圖象上,且x1<x2<0<x3,則y1、y2、y3的大小關系是()A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y36.下列運算正確的是()A.a6÷a3=a2 B.3a2?2a=6a3 C.(3a)2=3a2 D.2x2﹣x2=17.如圖,正六邊形ABCDEF內接于,M為EF的中點,連接DM,若的半徑為2,則MD的長度為A. B. C.2 D.18.《語文課程標準》規(guī)定:7﹣9年級學生,要求學會制訂自己的閱讀計劃,廣泛閱讀各種類型的讀物,課外閱讀總量不少于260萬字,每學年閱讀兩三部名著.那么260萬用科學記數法可表示為()A.26×105 B.2.6×102 C.2.6×106 D.260×1049.下面幾何的主視圖是()A. B. C. D.10.有三張正面分別標有數字-2,3,4的不透明卡片,它們除數字不同外,其余全部相同,現(xiàn)將它們背面朝上洗勻后,從中任取一張(不放回),再從剩余的卡片中任取一張,則兩次抽取的卡片上的數字之積為正偶數的概率是()A. B. C. D.11.一、單選題在某校“我的中國夢”演講比賽中,有7名學生參加了決賽,他們決賽的最終成績各不相同.其中的一名學生想要知道自己能否進入前3名,不僅要了解自己的成績,還要了解這7名學生成績的()A.平均數 B.眾數 C.中位數 D.方差12.如圖,在圓O中,直徑AB平分弦CD于點E,且CD=4,連接AC,OD,若∠A與∠DOB互余,則EB的長是()A.2 B.4 C. D.2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.一個盒子內裝有大小、形狀相同的四個球,其中紅球1個、綠球1個、白球2個,小明摸出一個球不放回,再摸出一個球,則兩次都摸到白球的概率是_______.14.兩地相距的路程為240千米,甲、乙兩車沿同一線路從地出發(fā)到地,分別以一定的速度勻速行駛,甲車先出發(fā)40分鐘后,乙車才出發(fā).途中乙車發(fā)生故障,修車耗時20分鐘,隨后,乙車車速比發(fā)生故障前減少了10千米/小時(仍保持勻速前行),甲、乙兩車同時到達地.甲、乙兩車相距的路程(千米)與甲車行駛時間(小時)之間的關系如圖所示,求乙車修好時,甲車距地還有____________千米.15.如圖,在Rt△ABC中,∠ACB=90°,點D、E、F分別是AB、AC、BC的中點,若CD=5,則EF的長為________.16.2的平方根是_________.17.如圖,在梯形ABCD中,AD∥BC,∠A=90°,點E在邊AB上,AD=BE,AE=BC,由此可以知道△ADE旋轉后能與△BEC重合,那么旋轉中心是_____.18.在某一時刻,測得一根高為2m的竹竿的影長為1m,同時測得一棟建筑物的影長為9m,那么這棟建筑物的高度為_____m.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)列方程或方程組解應用題:為響應市政府“綠色出行”的號召,小張上班由自駕車改為騎公共自行車.已知小張家距上班地點10千米.他用騎公共自行車的方式平均每小時行駛的路程比他用自駕車的方式平均每小時行駛的路程少45千米,他從家出發(fā)到上班地點,騎公共自行車方式所用的時間是自駕車方式所用的時間的4倍.小張用騎公共自行車方式上班平均每小時行駛多少千米?20.(6分)如圖,已知反比例函數y=k1x與一次函數y=k2x+b的圖象交于A(1,8),B(-4,m).求k1,k2,b的值;求△AOB的面積;若M(x1,y1),N(x2,y2)是反比例函數y=k1x的圖象上的兩點,且x1<x2,y21.(6分)計算:解不等式組,并寫出它的所有整數解.22.(8分)如圖,∠A=∠D,∠B=∠E,AF=DC.求證:BC=EF.23.(8分)已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點E作⊙O的切線交AB的延長線于F,切點為G,連接AG交CD于K.(1)如圖1,求證:KE=GE;(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;(3)如圖3,在(2)的條件下,連接CG交AB于點N,若sinE=,AK=,求CN的長.24.(10分)如圖,點E,F(xiàn)在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點O.求證:AB=DC;試判斷△OEF的形狀,并說明理由.25.(10分)計算:=_____.26.(12分)計算:.27.(12分)如圖,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函數y=在第一象限內的圖象分別交OA,AB于點C和點D,且△BOD的面積S△BOD=1.求反比例函數解析式;求點C的坐標.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據題意,剩下矩形與原矩形相似,利用相似形的對應邊的比相等可得.【詳解】解:依題意,在矩形ABDC中截取矩形ABFE,則矩形ABDC∽矩形FDCE,則設DF=xcm,得到:解得:x=4.5,則剩下的矩形面積是:4.5×6=17cm1.【點睛】本題就是考查相似形的對應邊的比相等,分清矩形的對應邊是解決本題的關鍵.2、A【解析】
根據∠B=58°得出∠AOC=116°,半徑相等,得出OC=OA,進而得出∠OAC=32°,利用直徑和圓周角定理解答即可.【詳解】解:∵∠B=58°,∴∠AOC=116°,∵OA=OC,∴∠C=∠OAC=32°,故選:A.【點睛】此題考查了圓周角的性質與等腰三角形的性質.此題比較簡單,解題的關鍵是注意數形結合思想的應用.3、D【解析】
根據線段垂直平分線性質得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.【詳解】∵DE垂直平分AC交AB于E,∴AE=CE,∴∠A=∠ACE,∵∠A=30°,∴∠ACE=30°,∵∠ACB=80°,∴∠BCE=∠ACB-∠ACE=50°,故選D.【點睛】本題考查了等腰三角形的性質,線段垂直平分線性質的應用,注意:線段垂直平分線上的點到線段兩個端點的距離相等.4、A【解析】
由拋物線的開口方向判斷a與2的關系,由拋物線與y軸的交點判斷c與2的關系,然后根據對稱軸判定b與2的關系以及2a+b=2;當x=﹣1時,y=a﹣b+c;然后由圖象確定當x取何值時,y>2.【詳解】①∵對稱軸在y軸右側,∴a、b異號,∴ab<2,故正確;②∵對稱軸∴2a+b=2;故正確;③∵2a+b=2,∴b=﹣2a,∵當x=﹣1時,y=a﹣b+c<2,∴a﹣(﹣2a)+c=3a+c<2,故錯誤;④根據圖示知,當m=1時,有最大值;當m≠1時,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m為實數).故正確.⑤如圖,當﹣1<x<3時,y不只是大于2.故錯誤.故選A.【點睛】本題主要考查了二次函數圖象與系數的關系,關鍵是熟練掌握①二次項系數a決定拋物線的開口方向,當a>2時,拋物線向上開口;當a<2時,拋物線向下開口;②一次項系數b和二次項系數a共同決定對稱軸的位置:當a與b同號時(即ab>2),對稱軸在y軸左;當a與b異號時(即ab<2),對稱軸在y軸右.(簡稱:左同右異)③常數項c決定拋物線與y軸交點,拋物線與y軸交于(2,c).5、A【解析】
作出反比例函數的圖象(如圖),即可作出判斷:∵-3<1,∴反比例函數的圖象在二、四象限,y隨x的增大而增大,且當x<1時,y>1;當x>1時,y<1.∴當x1<x2<1<x3時,y3<y1<y2.故選A.6、B【解析】
A、根據同底數冪的除法法則計算;
B、根據同底數冪的乘法法則計算;
C、根據積的乘方法則進行計算;
D、根據合并同類項法則進行計算.【詳解】解:A、a6÷a3=a3,故原題錯誤;B、3a2?2a=6a3,故原題正確;C、(3a)2=9a2,故原題錯誤;D、2x2﹣x2=x2,故原題錯誤;故選B.【點睛】考查同底數冪的除法,合并同類項,同底數冪的乘法,積的乘方,熟記它們的運算法則是解題的關鍵.7、A【解析】
連接OM、OD、OF,由正六邊形的性質和已知條件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函數求出OM,再由勾股定理求出MD即可.【詳解】連接OM、OD、OF,∵正六邊形ABCDEF內接于⊙O,M為EF的中點,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF?sin∠MFO=2×=,∴MD=,故選A.【點睛】本題考查了正多邊形和圓、正六邊形的性質、三角函數、勾股定理;熟練掌握正六邊形的性質,由三角函數求出OM是解決問題的關鍵.8、C【解析】
科學記數法的表示形式為的形式,其中,n為整數確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同當原數絕對值時,n是正數;當原數的絕對值時,n是負數.【詳解】260萬=2600000=.故選C.【點睛】此題考查科學記數法的表示方法科學記數法的表示形式為的形式,其中,n為整數,表示時關鍵要正確確定a的值以及n的值.9、B【解析】
主視圖是從物體正面看所得到的圖形.【詳解】解:從幾何體正面看故選B.【點睛】本題考查了三視圖的知識,主視圖是從物體的正面看得到的視圖.10、C【解析】畫樹狀圖得:
∵共有6種等可能的結果,兩次抽取的卡片上的數字之積為正偶數的有2種情況,
∴兩次抽取的卡片上的數字之積為正偶數的概率是:.故選C.【點睛】運用列表法或樹狀圖法求概率.注意畫樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件.11、C【解析】
由于其中一名學生想要知道自己能否進入前3名,共有7名選手參加,故應根據中位數的意義分析.【詳解】由于總共有7個人,且他們的成績各不相同,第4的成績是中位數,要判斷是否進入前3名,故應知道中位數的多少.故選C.【點睛】此題主要考查統(tǒng)計的有關知識,主要包括平均數、中位數、眾數、方差的意義.反映數據集中程度的統(tǒng)計量有平均數、中位數、眾數、方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當的運用.12、D【解析】
連接CO,由直徑AB平分弦CD及垂徑定理知∠COB=∠DOB,則∠A與∠COB互余,由圓周角定理知∠A=30°,∠COE=60°,則∠OCE=30°,設OE=x,則CO=2x,利用勾股定理即可求出x,再求出BE即可.【詳解】連接CO,∵AB平分CD,∴∠COB=∠DOB,AB⊥CD,CE=DE=2∵∠A與∠DOB互余,∴∠A+∠COB=90°,又∠COB=2∠A,∴∠A=30°,∠COE=60°,∴∠OCE=30°,設OE=x,則CO=2x,∴CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,∴BO=CO=4,∴BE=CO-OE=2.故選D.【點睛】此題主要考查圓內的綜合問題,解題的關鍵是熟知垂徑定理、圓周角定理及勾股定理.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、【解析】
首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與兩次都摸到白球的情況,再利用概率公式即可求得答案.【詳解】畫樹狀圖得:
∵共有12種等可能的結果,兩次都摸到白球的有2種情況,
∴兩次都摸到白球的概率是:=.
故答案為:.【點睛】本題考查用樹狀圖法求概率,解題的關鍵是掌握用樹狀圖法求概率.14、90【解析】【分析】觀察圖象可知甲車40分鐘行駛了30千米,由此可求出甲車速度,再根據甲車行駛小時時與乙車的距離為10千米可求得乙車的速度,從而可求得乙車出故障修好后的速度,再根據甲、乙兩車同時到達B地,設乙車出故障前走了t1小時,修好后走了t2小時,根據等量關系甲車用了小時行駛了全程,乙車行駛的路程為60t1+50t2=240,列方程組求出t2,再根據甲車的速度即可知乙車修好時甲車距B地的路程.【詳解】甲車先行40分鐘(),所行路程為30千米,因此甲車的速度為(千米/時),設乙車的初始速度為V乙,則有,解得:(千米/時),因此乙車故障后速度為:60-10=50(千米/時),設乙車出故障前走了t1小時,修好后走了t2小時,則有,解得:,45×2=90(千米),故答案為90.【點評】本題考查了一次函數的實際應用,難度較大,求出速度后能從題中找到必要的等量關系列方程組進行求解是關鍵.15、5【解析】
已知CD是Rt△ABC斜邊AB的中線,那么AB=2CD;EF是△ABC的中位線,則EF應等于AB的一半.【詳解】∵△ABC是直角三角形,CD是斜邊的中線,∴CD=AB,又∵EF是△ABC的中位線,∴AB=2CD=2×5=10,∴EF=×10=5.故答案為5.【點睛】本題主要考查三角形中位線定理,直角三角形斜邊上的中線,熟悉掌握是關鍵.16、【解析】
直接根據平方根的定義求解即可(需注意一個正數有兩個平方根).【詳解】解:2的平方根是故答案為.【點睛】本題考查了平方根的定義.注意一個正數有兩個平方根,它們互為相反數;0的平方根是0;負數沒有平方根.17、CD的中點【解析】
根據旋轉的性質,其中對應點到旋轉中心的距離相等,于是得到結論.【詳解】∵△ADE旋轉后能與△BEC重合,∴△ADE≌△BEC,∴∠AED=∠BCE,∠B=∠A=90°,∠ADE=∠BEC,DE=EC,∴∠AED+∠BEC=90°,∴∠DEC=90°,∴△DEC是等腰直角三角形,∴D與E,E與C是對應頂點,∵CD的中點到D,E,C三點的距離相等,∴旋轉中心是CD的中點,故答案為:CD的中點.【點睛】本題考查了旋轉的性質,等腰直角三角形的性質,關鍵是明確旋轉中心的概念.18、1【解析】分析:根據同時同地的物高與影長成正比列式計算即可得解.詳解:設這棟建筑物的高度為xm,由題意得,,解得x=1,即這棟建筑物的高度為1m.故答案為1.點睛:同時同地的物高與影長成正比,利用相似三角形的相似比,列出方程,通過解方程求出這棟高樓的高度,體現(xiàn)了方程的思想.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、15千米.【解析】
首先設小張用騎公共自行車方式上班平均每小時行駛x千米,根據題意可得等量關系:騎公共自行車方式所用的時間=自駕車方式所用的時間×4,根據等量關系,列出方程,再解即可.【詳解】:解:設小張用騎公共自行車方式上班平均每小時行駛x千米,根據題意列方程得:=4×解得:x=15,經檢驗x=15是原方程的解且符合實際意義.答:小張用騎公共自行車方式上班平均每小時行駛15千米.20、(1)k1=1,b=6(1)15(3)點M在第三象限,點N在第一象限【解析】試題分析:(1)把A(1,8)代入y=k1x求得k1=8,把B(-4,m)代入y=k1x求得m=-1,把A(1,8)、B(-4,-1)代入y=k2x+b求得k2試題解析:解:(1)把A(1,8),B(-4,m)分別代入y=k1x∵A(1,8)、B(-4,-1)在y=k∴k2解得,k2(1)設直線y=1x+6與x軸的交點為C,當y=0時,x=-3,∴OC=3∴S△ABC=S△AOC+S△BOC=1(3)點M在第三象限,點N在第一象限.①若x1<x2<0,點M、N在第三象限的分支上,則y1②若0<x1<x2,點M、N在第一象限的分支上,則y1③若x1<0<x2,M在第三象限,點N在第一象限,則y1考點:反比例函數與一次函數的交點坐標;用待定系數法求函數表達式;反比例函數的性質.21、(1);(1)0,1,1.【解析】
(1)本題涉及零指數冪、負指數冪、特殊角的三角函數值,在計算時,需要針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果(1)先求出每個不等式的解集,再求出不等式組的解集,最后再找出整數解即可【詳解】解:(1)原式=1﹣1×,=7﹣.(1),解不等式①得:x≤1,解不等式②得:x>﹣1,∴不等式組的解集是:﹣1<x≤1.故不等式組的整數解是:0,1,1.【點睛】此題考查零指數冪、負指數冪、特殊角的三角函數值,一元一次不等式組的整數解,掌握運算法則是解題關鍵22、證明見解析.【解析】
想證明BC=EF,可利用AAS證明△ABC≌△DEF即可.【詳解】解:∵AF=DC,∴AF+FC=FC+CD,∴AC=FD,在△ABC和△DEF中,∴△ABC≌△DEF(AAS)∴BC=EF.【點睛】本題考查全等三角形的判定和性質,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.23、(1)證明見解析;(2)△EAD是等腰三角形.證明見解析;(3).【解析】試題分析:(1)連接OG,則由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,從而可得∠KGE=∠AKH=∠EKG,這樣即可得到KE=GE;(2)設∠FGB=α,由AB是直徑可得∠AGB=90°,從而可得∠KGE=90°-α,結合GE=KE可得∠EKG=90°-α,這樣在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,這樣可得∠E=∠ACH,由此即可得到CA∥EF;(3)如下圖2,作NP⊥AC于P,由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,設AH=3a,可得AC=5a,CH=4a,則tan∠CAH=,由(2)中結論易得∠CAK=∠EGK=∠EKG=∠AKC,從而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,結合AK=可得a=1,則AC=5;在四邊形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,結合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH,在Rt△APN中,由tan∠CAH=,可設PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,則可得b=,由此即可在Rt△CPN中由勾股定理解出CN的長.試題解析:(1)如圖1,連接OG.∵EF切⊙O于G,∴OG⊥EF,∴∠AGO+∠AGE=90°,∵CD⊥AB于H,∴∠AHD=90°,∴∠OAG=∠AKH=90°,∵OA=OG,∴∠AGO=∠OAG,∴∠AGE=∠AKH,∵∠EKG=∠AKH,∴∠EKG=∠AGE,∴KE=GE.(2)設∠FGB=α,∵AB是直徑,∴∠AGB=90°,∴∠AGE=∠EKG=90°﹣α,∴∠E=180°﹣∠AGE﹣∠EKG=2α,∵∠FGB=∠ACH,∴∠ACH=2α,∴∠ACH=∠E,∴CA∥FE.(3)作NP⊥AC于P.∵∠ACH=∠E,∴sin∠E=sin∠ACH=,設AH=3a,AC=5a,則CH=,tan∠CAH=,∵CA∥FE,∴∠CAK=∠AGE,∵∠AGE=∠AKH,∴∠CAK=∠AKH,∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=,∵AK=,∴,∴a=1.AC=5,∵∠BHD=∠AGB=90°,∴∠BHD+∠AGB=180°,在四邊形B
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司特長生選拔活動方案
- 公司組織端午活動方案
- 公司睡衣派對活動方案
- 公司清明中山陵活動方案
- 公司端午團建策劃方案
- 公司禮品交換活動方案
- 公司樣板車間活動方案
- 公司春茗晚會活動方案
- 公司晚宴戶外活動方案
- 公司籃球聯(lián)賽活動方案
- 餐飲連鎖企業(yè)品牌授權與經營管理協(xié)議
- 2025-2030年中國生物醫(yī)學材料行業(yè)市場深度分析及發(fā)展前景與投資研究報告
- 北京市2024年高招本科普通批錄取投檔線
- DB32-T 5088-2025 廢活性炭綜合利用污染控制技術規(guī)范
- 2024-2025學年人教版數學八年級下冊期末復習卷(含解析)
- 學習解讀《水利水電建設工程驗收規(guī)程》SLT223-2025課件
- DZ∕T 0213-2020 礦產地質勘查規(guī)范 石灰?guī)r、水泥配料類(正式版)
- 消防檔案模板(完整版)
- 零星維修工程項目方案施工組織計劃
- 厭氧膠(MSDS)
- E16型超速保護系統(tǒng)的特點與使用
評論
0/150
提交評論