2023-2024學年江蘇省江陰市華士片、澄東片重點達標名校中考一模數學試題含解析_第1頁
2023-2024學年江蘇省江陰市華士片、澄東片重點達標名校中考一模數學試題含解析_第2頁
2023-2024學年江蘇省江陰市華士片、澄東片重點達標名校中考一模數學試題含解析_第3頁
2023-2024學年江蘇省江陰市華士片、澄東片重點達標名校中考一模數學試題含解析_第4頁
2023-2024學年江蘇省江陰市華士片、澄東片重點達標名校中考一模數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023-2024學年江蘇省江陰市華士片、澄東片重點達標名校中考一模數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(共10小題,每小題3分,共30分)1.下列實數中是無理數的是()A. B.2﹣2 C.5. D.sin45°2.二次函數y=3(x﹣1)2+2,下列說法正確的是()A.圖象的開口向下B.圖象的頂點坐標是(1,2)C.當x>1時,y隨x的增大而減小D.圖象與y軸的交點坐標為(0,2)3.下列圖形中,不是中心對稱圖形的是()A.平行四邊形 B.圓 C.等邊三角形 D.正六邊形4.下列說法中不正確的是()A.全等三角形的周長相等B.全等三角形的面積相等C.全等三角形能重合D.全等三角形一定是等邊三角形5.如圖,要使□ABCD成為矩形,需添加的條件是()A.AB=BC B.∠ABC=90° C.AC⊥BD D.∠1=∠26.圓錐的底面直徑是80cm,母線長90cm,則它的側面積是A. B. C. D.7.如圖,四個有理數在數軸上的對應點M,P,N,Q,若點M,N表示的有理數互為相反數,則圖中表示絕對值最小的數的點是()A.點M B.點N C.點P D.點Q8.已知正方形ABCD的邊長為4cm,動點P從A出發,沿AD邊以1cm/s的速度運動,動點Q從B出發,沿BC,CD邊以2cm/s的速度運動,點P,Q同時出發,運動到點D均停止運動,設運動時間為x(秒),△BPQ的面積為y(cm2),則y與x之間的函數圖象大致是()A. B. C. D.9.我國古代數學著作《孫子算經》中有“多人共車”問題:今有三人共車,二車空;二人共車,九人步.問人與車各幾何?其大意是:每車坐3人,兩車空出來;每車坐2人,多出9人無車坐.問人數和車數各多少?設車輛,根據題意,可列出的方程是().A. B.C. D.10.計算的結果是(

)A. B. C. D.2二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,等邊三角形AOB的頂點A的坐標為(﹣4,0),頂點B在反比例函數(x<0)的圖象上,則k=.12.如圖,△ABC中,AB=5,AC=6,將△ABC翻折,使得點A落到邊BC上的點A′處,折痕分別交邊AB、AC于點E,點F,如果A′F∥AB,那么BE=_____.13.已知一個多邊形的每一個內角都等于108°,則這個多邊形的邊數是.14.函數y=中自變量x的取值范圍是___________.15.如圖,在邊長為3的菱形ABCD中,點E在邊CD上,點F為BE延長線與AD延長線的交點.若DE=1,則DF的長為________.16.的相反數是_____,倒數是_____,絕對值是_____三、解答題(共8題,共72分)17.(8分)如圖,已知O是坐標原點,B、C兩點的坐標分別為(3,﹣1)、(2,1).以0點為位似中心在y軸的左側將△OBC放大到兩倍(即新圖與原圖的相似比為2),畫出圖形;分別寫出B、C兩點的對應點B′、C′的坐標;如果△OBC內部一點M的坐標為(x,y),寫出M的對應點M′的坐標.18.(8分)如圖,在平面直角坐標系中,二次函數y=(x-a)(x-3)(0<a<3)的圖象與x軸交于點A、B(點A在點B的左側),與y軸交于點D,過其頂點C作直線CP⊥x軸,垂足為點P,連接AD、BC.(1)求點A、B、D的坐標;(2)若△AOD與△BPC相似,求a的值;(3)點D、O、C、B能否在同一個圓上,若能,求出a的值,若不能,請說明理由.19.(8分)如圖①,在四邊形ABCD中,AC⊥BD于點E,AB=AC=BD,點M為BC中點,N為線段AM上的點,且MB=MN.(1)求證:BN平分∠ABE;(2)若BD=1,連結DN,當四邊形DNBC為平行四邊形時,求線段BC的長;(3)如圖②,若點F為AB的中點,連結FN、FM,求證:△MFN∽△BDC.20.(8分)在“植樹節”期間,小王、小李兩人想通過摸球的方式來決定誰去參加學校植樹活動,規則如下:在兩個盒子內分別裝入標有數字1,2,3,4的四個和標有數字1,2,3的三個完全相同的小球,分別從兩個盒子中各摸出一個球,如果所摸出的球上的數字之和小于5,那么小王去,否則就是小李去.(1)用樹狀圖或列表法求出小王去的概率;(2)小李說:“這種規則不公平”,你認同他的說法嗎?請說明理由.21.(8分)如圖,一次函數y=kx+b的圖象與反比例函數y=mx(1)求一次函數,反比例函數的表達式;(2)求證:點C為線段AP的中點;(3)反比例函數圖象上是否存在點D,使四邊形BCPD為菱形?如果存在,說明理由并求出點D的坐標;如果不存在,說明理由.22.(10分)如圖所示,AB是⊙O的一條弦,DB切⊙O于點B,過點D作DC⊥OA于點C,DC與AB相交于點E.(1)求證:DB=DE;(2)若∠BDE=70°,求∠AOB的大小.23.(12分)計算:()﹣2﹣+(﹣2)0+|2﹣|24.解方程(1)x1﹣1x﹣1=0(1)(x+1)1=4(x﹣1)1.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】A、是有理數,故A選項錯誤;B、是有理數,故B選項錯誤;C、是有理數,故C選項錯誤;D、是無限不循環小數,是無理數,故D選項正確;故選:D.2、B【解析】

由拋物線解析式可求得其開口方向、頂點坐標、最值及增減性,則可判斷四個選項,可求得答案.【詳解】解:A、因為a=3>0,所以開口向上,錯誤;B、頂點坐標是(1,2),正確;C、當x>1時,y隨x增大而增大,錯誤;D、圖象與y軸的交點坐標為(0,5),錯誤;故選:B.【點睛】考查二次函數的性質,掌握二次函數的頂點式是解題的關鍵,即在y=a(x﹣h)2+k中,對稱軸為x=h,頂點坐標為(h,k).3、C【解析】

根據中心對稱圖形的定義依次判斷各項即可解答.【詳解】選項A、平行四邊形是中心對稱圖形;選項B、圓是中心對稱圖形;選項C、等邊三角形不是中心對稱圖形;選項D、正六邊形是中心對稱圖形;故選C.【點睛】本題考查了中心對稱圖形的判定,熟知中心對稱圖形的定義是解決問題的關鍵.4、D【解析】

根據全等三角形的性質可知A,B,C命題均正確,故選項均錯誤;D.錯誤,全等三角也可能是直角三角,故選項正確.故選D.【點睛】本題考查全等三角形的性質,兩三角形全等,其對應邊和對應角都相等.5、B【解析】

根據一個角是90度的平行四邊形是矩形進行選擇即可.【詳解】解:A、是鄰邊相等,可判定平行四邊形ABCD是菱形;

B、是一內角等于90°,可判斷平行四邊形ABCD成為矩形;

C、是對角線互相垂直,可判定平行四邊形ABCD是菱形;

D、是對角線平分對角,可判斷平行四邊形ABCD成為菱形;故選:B.【點睛】本題主要應用的知識點為:矩形的判定.①對角線相等且相互平分的四邊形為矩形.②一個角是90度的平行四邊形是矩形.6、D【解析】圓錐的側面積=×80π×90=3600π(cm2).故選D.7、C【解析】試題分析:∵點M,N表示的有理數互為相反數,∴原點的位置大約在O點,∴絕對值最小的數的點是P點,故選C.考點:有理數大小比較.8、B【解析】

根據題意,Q點分別在BC、CD上運動時,形成不同的三角形,分別用x表示即可.【詳解】(1)當0≤x≤2時,BQ=2x當2≤x≤4時,如下圖由上可知故選:B.【點睛】本題是雙動點問題,解答時要注意討論動點在臨界兩側時形成的不同圖形,并要根據圖形列出函數關系式.9、B【解析】

根據題意,表示出兩種方式的總人數,然后根據人數不變列方程即可.【詳解】根據題意可得:每車坐3人,兩車空出來,可得人數為3(x-2)人;每車坐2人,多出9人無車坐,可得人數為(2x+9)人,所以所列方程為:3(x-2)=2x+9.故選B.【點睛】此題主要考查了一元一次方程的應用,關鍵是找到問題中的等量關系:總人數不變,列出相應的方程即可.10、C【解析】

化簡二次根式,并進行二次根式的乘法運算,最后合并同類二次根式即可.【詳解】原式=3﹣2·=3﹣=.故選C.【點睛】本題主要考查二次根式的化簡以及二次根式的混合運算.二、填空題(本大題共6個小題,每小題3分,共18分)11、-4.【解析】

過點B作BD⊥x軸于點D,因為△AOB是等邊三角形,點A的坐標為(-4,0)所∠AOB=60°,根據銳角三角函數的定義求出BD及OD的長,可得出B點坐標,進而得出反比例函數的解析式.【詳解】過點B作BD⊥x軸于點D,∵△AOB是等邊三角形,點A的坐標為(﹣4,0),∴∠AOB=60°,OB=OA=AB=4,∴OD=OB=2,BD=OB?sin60°=4×=2,∴B(﹣2,2),∴k=﹣2×2=﹣4.【點睛】本題考查了反比例函數圖象上點的坐標特點、等邊三角形的性質、解直角三角函數等知識,難度適中.12、【解析】

設BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,依據△A'CF∽△BCA,可得,即=,進而得到BE=.【詳解】解:如圖,由折疊可得,∠AFE=∠A'FE,∵A'F∥AB,∴∠AEF=∠A'FE,∴∠AEF=∠AFE,∴AE=AF,由折疊可得,AF=A'F,設BE=x,則AE=5﹣x=AF=A'F,CF=6﹣(5﹣x)=1+x,∵A'F∥AB,∴△A'CF∽△BCA,∴,即=,解得x=,∴BE=,故答案為:.【點睛】本題主要考查了折疊問題以及相似三角形的判定與性質的運用,折疊是一種對稱變換,它屬于軸對稱,折疊前后圖形的形狀和大小不變,對應邊和對應角相等.13、1【解析】試題分析:∵多邊形的每一個內角都等于108°,∴每一個外角為72°.∵多邊形的外角和為360°,∴這個多邊形的邊數是:360÷÷72=1.14、x≥﹣且x≠1【解析】

試題解析:根據題意得:解得:x≥﹣且x≠1.故答案為:x≥﹣且x≠1.15、1.1【解析】

求出EC,根據菱形的性質得出AD∥BC,得出相似三角形,根據相似三角形的性質得出比例式,代入求出即可.【詳解】∵DE=1,DC=3,∴EC=3-1=2,∵四邊形ABCD是菱形,∴AD∥BC,∴△DEF∽△CEB,∴,∴,∴DF=1.1,故答案為1.1.【點睛】此題主要考查了相似三角形的判定與性質,解題關鍵是根據菱形的性質證明△DEF∽△CEB,然后根據相似三角形的性質可求解.16、,【解析】∵只有符號不同的兩個數是互為相反數,∴的相反數是;∵乘積為1的兩個數互為倒數,∴的倒數是;∵負數得絕對值是它的相反數,∴絕對值是故答案為(1).(2).(3).三、解答題(共8題,共72分)17、(1)畫圖見解析(2)B'(-6,2)、C'(-4,-2)(3)M'(-2x,-2y)【解析】

解:(1)(2)以0點為位似中心在y軸的左側將△OBC放大到兩倍,則是對應點的坐標放大兩倍,并將符號進行相應的改變,因為B(3,-1),則B’(-6,2)C(2,1),則C‘(-4,-2)(3)因為點M(x,y)在△OBC內部,則它的對應點M′的坐標是M的坐標乘以2,并改變符號,即M’(-2x,-2y)18、(1)(1)A(a,0),B(3,0),D(0,3a).(2)a的值為.(3)當a=時,D、O、C、B四點共圓.【解析】【分析】(1)根據二次函數的圖象與x軸相交,則y=0,得出A(a,0),B(3,0),與y軸相交,則x=0,得出D(0,3a).(2)根據(1)中A、B、D的坐標,得出拋物線對稱軸x=,AO=a,OD=3a,代入求得頂點C(,-),從而得PB=3-=,PC=;再分情況討論:①當△AOD∽△BPC時,根據相似三角形性質得,

解得:a=3(舍去);②△AOD∽△CPB,根據相似三角形性質得,解得:a1=3(舍),a2=;(3)能;連接BD,取BD中點M,根據已知得D、B、O在以BD為直徑,M(,a)為圓心的圓上,若點C也在此圓上,則MC=MB,根據兩點間的距離公式得一個關于a的方程,解之即可得出答案.【詳解】(1)∵y=(x-a)(x-3)(0<a<3)與x軸交于點A、B(點A在點B的左側),∴A(a,0),B(3,0),當x=0時,y=3a,∴D(0,3a);(2)∵A(a,0),B(3,0),D(0,3a).∴對稱軸x=,AO=a,OD=3a,當x=時,y=-,∴C(,-),∴PB=3-=,PC=,①當△AOD∽△BPC時,∴,即,

解得:a=3(舍去);②△AOD∽△CPB,∴,即,解得:a1=3(舍),a2=.綜上所述:a的值為;(3)能;連接BD,取BD中點M,∵D、B、O三點共圓,且BD為直徑,圓心為M(,a),若點C也在此圓上,∴MC=MB,∴,化簡得:a4-14a2+45=0,∴(a2-5)(a2-9)=0,∴a2=5或a2=9,∴a1=,a2=-,a3=3(舍),a4=-3(舍),∵0<a<3,∴a=,∴當a=時,D、O、C、B四點共圓.【點睛】本題考查了二次函數、相似三角形的性質、四點共圓等,綜合性較強,有一定的難度,正確進行分析,熟練應用相關知識是解題的關鍵.19、(1)證明見解析;(2);(3)證明見解析.【解析】分析:(1)由AB=AC知∠ABC=∠ACB,由等腰三角形三線合一知AM⊥BC,從而根據∠MAB+∠ABC=∠EBC+∠ACB知∠MAB=∠EBC,再由△MBN為等腰直角三角形知∠EBC+∠NBE=∠MAB+∠ABN=∠MNB=45°可得證;(2)設BM=CM=MN=a,知DN=BC=2a,證△ABN≌△DBN得AN=DN=2a,Rt△ABM中利用勾股定理可得a的值,從而得出答案;(3)F是AB的中點知MF=AF=BF及∠FMN=∠MAB=∠CBD,再由即可得證.詳解:(1)∵AB=AC,∴∠ABC=∠ACB,∵M為BC的中點,∴AM⊥BC,在Rt△ABM中,∠MAB+∠ABC=90°,在Rt△CBE中,∠EBC+∠ACB=90°,∴∠MAB=∠EBC,又∵MB=MN,∴△MBN為等腰直角三角形,∴∠MNB=∠MBN=45°,∴∠EBC+∠NBE=45°,∠MAB+∠ABN=∠MNB=45°,∴∠NBE=∠ABN,即BN平分∠ABE;(2)設BM=CM=MN=a,∵四邊形DNBC是平行四邊形,∴DN=BC=2a,在△ABN和△DBN中,∵,∴△ABN≌△DBN(SAS),∴AN=DN=2a,在Rt△ABM中,由AM2+MB2=AB2可得(2a+a)2+a2=1,解得:a=±(負值舍去),∴BC=2a=;(3)∵F是AB的中點,∴在Rt△MAB中,MF=AF=BF,∴∠MAB=∠FMN,又∵∠MAB=∠CBD,∴∠FMN=∠CBD,∵,∴,∴△MFN∽△BDC.點睛:本題主要考查相似形的綜合問題,解題的關鍵是掌握等腰三角形三線合一的性質、直角三角形和平行四邊形的性質及全等三角形與相似三角形的判定與性質等知識點.20、(1);(2)規則是公平的;【解析】試題分析:(1)先利用畫樹狀圖展示所有12種等可能的結果數,然后根據概率公式求解即可;(2)分別計算出小王和小李去植樹的概率即可知道規則是否公平.試題解析:(1)畫樹狀圖為:共有12種等可能的結果數,其中摸出的球上的數字之和小于6的情況有9種,所以P(小王)=;(2)不公平,理由如下:∵P(小王)=,P(小李)=,≠,∴規則不公平.點睛:本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.用到的知識點為:概率=所求情況數與總情況數之比.21、(1)y=24x+1.(2)點C為線段AP的中點.(3)存在點D,使四邊形BCPD為菱形,點D【解析】試題分析:(1)由點A與點B關于y軸對稱,可得AO=BO,再由A的坐標求得B點的坐標,從而求得點P的坐標,將P坐標代入反比例解析式求出m的值,即可確定出反比例解析式,將A與P坐標代入一次函數解析式求出k與b的值,確定出一次函數解析式;(2)由AO=BO,PB∥CO,即可證得結論;(3)假設存在這樣的D點,使四邊形BCPD為菱形,過點C作CD平行于x軸,交PB于點E,交反比例函數y=-8試題解析:(1)∵點A與點B關于y軸對稱,∴AO=BO,∵A(-4,0),∴B(4,0),∴P(4,2),把P(4,2)代入y=mx得m∴反比例函數的解析式:y=8x把A(-4,0),P(4,2)代入y=kx+b得:{0=-4k+b2=4k+b,解得:所以一次函數的解析式:y=24x(2)∵點A與點B關于y軸對稱,∴OA=OB∵PB丄x軸于點B,∴∠PBA=90°,∵∠COA=90°,∴PB∥CO,∴點C為線段AP的中點.(3)存在點D,使四邊形BCPD為菱形∵點C為線段AP的中點,∴BC=12∴BC和PC是菱形的兩條邊由y=14x+1,可得點C過點C作CD平行于x軸,交PB于點E,交反比例函數y=-8x的圖象于點分別連結PD、BD,∴點D(8,1),BP⊥CD∴PE=BE=1,∴CE=D

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論