




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2023-2024學(xué)年湖南衡陽(yáng)縣高一數(shù)學(xué)第二學(xué)期期末統(tǒng)考模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.有一塔形幾何體由若干個(gè)正方體構(gòu)成,構(gòu)成方式如圖所示,上層正方體下底面的四個(gè)頂點(diǎn)是下層正方體上底面各邊的中點(diǎn).已知最底層正方體的棱長(zhǎng)為2,且該塔形的表面積(含最底層正方體的底面面積)超過(guò)39,則該塔形中正方體的個(gè)數(shù)至少是A.4 B.5 C.6 D.72.的展開式中含的項(xiàng)的系數(shù)為()A.-1560 B.-600 C.600 D.15603.已知的內(nèi)角、、的對(duì)邊分別為、、,且,若,則的外接圓面積為()A. B. C. D.4.下列各角中與角終邊相同的是()A. B. C. D.5.已知,則角的終邊所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.已知、是圓:上的兩個(gè)動(dòng)點(diǎn),,,若是線段的中點(diǎn),則的值為()A. B. C. D.7.在ΔABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若c=2bsinC,B≤πA.π6 B.π4 C.π8.已知等差數(shù)列的前項(xiàng)和為,首項(xiàng),若,則當(dāng)取最大值時(shí),的值為()A. B. C. D.9.已知向量,,若,共線,則實(shí)數(shù)()A. B. C. D.610.直線2x+y+4=0與圓x+22+y+32=5A.255 B.455二、填空題:本大題共6小題,每小題5分,共30分。11.若角的終邊經(jīng)過(guò)點(diǎn),則實(shí)數(shù)的值為_______.12.若數(shù)列滿足,,則的最小值為__________________.13.設(shè)向量,且,則__________.14._________________.15.設(shè),其中,則的值為________.16.一個(gè)封閉的正三棱柱容器,該容器內(nèi)裝水恰好為其容積的一半(如圖1,底面處于水平狀態(tài)),將容器放倒(如圖2,一個(gè)側(cè)面處于水平狀態(tài)),這時(shí)水面與各棱交點(diǎn)分別為E,F(xiàn)、,,則的值是__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.兩地相距千米,汽車從地勻速行駛到地,速度不超過(guò)千米小時(shí),已知汽車每小時(shí)的運(yùn)輸成本(單位:元)由可變部分和固定部分兩部分組成:可變部分與速度的平方成正比,比例系數(shù)為,固定部分為元,(1)把全程運(yùn)輸成本(元)表示為速度(千米小時(shí))的函效:并求出當(dāng)時(shí),汽車應(yīng)以多大速度行駛,才能使得全程運(yùn)輸成本最小;(2)隨著汽車的折舊,運(yùn)輸成本會(huì)發(fā)生一些變化,那么當(dāng),此時(shí)汽車的速度應(yīng)調(diào)整為多大,才會(huì)使得運(yùn)輸成本最小,18.化簡(jiǎn).19.渦陽(yáng)縣某華為手機(jī)專賣店對(duì)市民進(jìn)行華為手機(jī)認(rèn)可度的調(diào)查,在已購(gòu)買華為手機(jī)的名市民中,隨機(jī)抽取名,按年齡(單位:歲)進(jìn)行統(tǒng)計(jì)的頻數(shù)分布表和頻率分布直方圖如圖:分組(歲)頻數(shù)合計(jì)(1)求頻數(shù)分布表中、的值,并補(bǔ)全頻率分布直方圖;(2)在抽取的這名市民中,從年齡在、內(nèi)的市民中用分層抽樣的方法抽取人參加華為手機(jī)宣傳活動(dòng),現(xiàn)從這人中隨機(jī)選取人各贈(zèng)送一部華為手機(jī),求這人中恰有人的年齡在內(nèi)的概率.20.已知函數(shù).(1)證明函數(shù)在定義域上單調(diào)遞增;(2)求函數(shù)的值域;(3)令,討論函數(shù)零點(diǎn)的個(gè)數(shù).21.已知數(shù)列滿足:,,數(shù)列滿足.(1)若數(shù)列的前項(xiàng)和為,求的值;(2)求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】
根據(jù)相鄰正方體的關(guān)系得出個(gè)正方體的棱長(zhǎng)為等比數(shù)列,求出塔形表面積的通項(xiàng)公式,令,即可得出的范圍.【詳解】設(shè)從最底層開始的第層的正方體棱長(zhǎng)為,則是以2為首項(xiàng),以為公比的等比數(shù)列.∴是以4為首項(xiàng),以為公比的等比數(shù)列∴塔形的表面積為.令,解得.∴塔形正方體最少為6個(gè).故選C.【點(diǎn)睛】此題考查了立體圖形的表面積問(wèn)題以及等比數(shù)列求和公式的應(yīng)用.解決本題的關(guān)鍵是得到上下正方體的棱長(zhǎng)之間的關(guān)系,從而即可得出依次排列的正方體的一個(gè)面的面積,這里還要注意把最下面的正方體看做是6個(gè)面之外,上面的正方體都是露出了4個(gè)面.2、A【解析】的項(xiàng)可以由或的乘積得到,所以含的項(xiàng)的系數(shù)為,故選A.3、D【解析】
先化簡(jiǎn)得,再利用正弦定理求出外接圓的半徑,即得的外接圓面積.【詳解】由題得,所以,所以,所以,所以.由正弦定理得,所以的外接圓面積為.故選D【點(diǎn)睛】本題主要考查正弦定理余弦定理解三角形,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.4、D【解析】
寫出與終邊相同的角,取值得答案.【詳解】解:與終邊相同的角為,,取,得,與終邊相同.故選:D.【點(diǎn)睛】本題考查終邊相同角的表示法,屬于基礎(chǔ)題.5、D【解析】由可知:則的終邊所在的象限為第四象限故選6、A【解析】由題意得,所以,選A.7、A【解析】
利用正弦定理可求得sinB=12【詳解】因?yàn)閏=2bsinC,所以sinC=2sinBsinC,所以sinB=1【點(diǎn)睛】本題主要考查正弦定理的運(yùn)用,難度較小.8、B【解析】
設(shè)等差數(shù)列的公差為,,由,可得,令求出正整數(shù)的最大值,即可得出取得最大值時(shí)對(duì)應(yīng)的的值.【詳解】設(shè)等差數(shù)列的公差為,由,得,可得,令,,可得,解得.因此,最大.故選:B.【點(diǎn)睛】本題考查等差數(shù)列前項(xiàng)和的最值,一般利用二次函數(shù)的基本性質(zhì)求解,也可由數(shù)列項(xiàng)的符號(hào)求出正整數(shù)的最大值來(lái)求解,考查計(jì)算能力,屬于中等題.9、C【解析】
利用向量平行的性質(zhì)直接求解.【詳解】向量,,共線,,解得實(shí)數(shù).故選:.【點(diǎn)睛】本題主要考查向量平行的性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.10、C【解析】
先求出圓心到直線的距離d,然后根據(jù)圓的弦長(zhǎng)公式l=2r【詳解】由題意得,圓x+22+y+32=5圓心-2,-3到直線2x+y+4=0的距離為d=|2×(-2)-3+4|∴MN=2故選C.【點(diǎn)睛】求圓的弦長(zhǎng)有兩種方法:一是求出直線和圓的交點(diǎn)坐標(biāo),然后利用兩點(diǎn)間的距離公式求解;二是利用幾何法求解,即求出圓心到直線的距離,在由半徑、弦心距和半弦長(zhǎng)構(gòu)成的直角三角形中運(yùn)用勾股定理求解,此時(shí)不要忘了求出的是半弦長(zhǎng).在具體的求解中一般利用幾何法,以減少運(yùn)算、增強(qiáng)解題的直觀性.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】
利用三角函數(shù)的定義以及誘導(dǎo)公式求出的值.【詳解】由誘導(dǎo)公式得,另一方面,由三角函數(shù)的定義得,解得,故答案為.【點(diǎn)睛】本題考查誘導(dǎo)公式與三角函數(shù)的定義,解題時(shí)要充分利用誘導(dǎo)公式求特殊角的三角函數(shù)值,并利用三角函數(shù)的定義求參數(shù)的值,考查計(jì)算能力,屬于基礎(chǔ)題.12、【解析】
由題又,故考慮用累加法求通項(xiàng)公式,再分析的最小值.【詳解】,故,當(dāng)且僅當(dāng)時(shí)成立.又為正整數(shù),且,故考查當(dāng)時(shí).當(dāng)時(shí),當(dāng)時(shí),因?yàn)?故當(dāng)時(shí),取最小值為.故答案為:.【點(diǎn)睛】本題主要考查累加法,求最小值時(shí)先用基本不等式,發(fā)現(xiàn)不滿足“三相等”,故考慮與相等時(shí)的取值最近的兩個(gè)正整數(shù).13、【解析】因?yàn)椋裕蚀鸢笧?14、3【解析】
分式上下為的二次多項(xiàng)式,故上下同除以進(jìn)行分析.【詳解】由題,,又,故.
故答案為:3.【點(diǎn)睛】本題考查了分式型多項(xiàng)式的極限問(wèn)題,注意:當(dāng)時(shí),15、【解析】
由兩角差的正弦公式以及誘導(dǎo)公式,即可求出的值.【詳解】,所以,因?yàn)椋剩军c(diǎn)睛】本題主要考查兩角差的正弦公式的逆用以及誘導(dǎo)公式的應(yīng)用.16、【解析】
設(shè),則,由題意得:,由此能求出的值.【詳解】設(shè),則,由題意得:,解得,.故答案為:.【點(diǎn)睛】本題考查兩線段比值的求法、三棱柱的體積等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1),當(dāng)汽車以的速度行駛,能使得全稱運(yùn)輸成本最小;(2).【解析】
(1)計(jì)算出汽車的行駛時(shí)間為小時(shí),可得出全程運(yùn)輸成本為,其中,代入,,利用基本不等式求解;(2)注意到時(shí),利用基本不等式取不到等號(hào),轉(zhuǎn)而利用雙勾函數(shù)的單調(diào)性求解.【詳解】(1)由題意可知,汽車從地到地所用時(shí)間為小時(shí),全程成本為,.當(dāng),時(shí),,當(dāng)且僅當(dāng)時(shí)取等號(hào),所以,汽車應(yīng)以的速度行駛,能使得全程行駛成本最小;(2)當(dāng),時(shí),,由雙勾函數(shù)的單調(diào)性可知,當(dāng)時(shí),有最小值,所以,汽車應(yīng)以的速度行駛,才能使得全程運(yùn)輸成本最小.【點(diǎn)睛】本題考查基本不等式的應(yīng)用,解題的關(guān)鍵就是建立函數(shù)模型,得出函數(shù)解析式,并通過(guò)基本不等式進(jìn)行求解,考查學(xué)生數(shù)學(xué)應(yīng)用能力,屬于中等題.18、【解析】
利用誘導(dǎo)公式進(jìn)行化簡(jiǎn),即可得到答案.【詳解】原式.【點(diǎn)睛】本題考查誘導(dǎo)公式的應(yīng)用,考查運(yùn)算求解能力,求解時(shí)注意奇變偶不變,符號(hào)看象限這一口訣的應(yīng)用.19、(1),頻率分布直方圖見(jiàn)解析;(2).【解析】
(1)根據(jù)分布直方圖計(jì)算出第二個(gè)矩形的面積,乘以可得出的值,再由頻數(shù)之和為得出的值,利用頻數(shù)除以樣本容量得出第四個(gè)矩形的面積,并計(jì)算出第四個(gè)矩形的高,于此可補(bǔ)全頻率分布直方圖;(2)先計(jì)算出人中年齡在、內(nèi)的市民人數(shù)分別為、,將年齡在的位市民記為,年齡在的位市民記為、、、,記事件恰有人的年齡在內(nèi),列舉出所有的基本事件,并確定事件所包含的基本事件數(shù),利用古典概型的概率公式可計(jì)算出事件的概率.【詳解】(1)由頻數(shù)分布表和頻率分布直方圖可知,解得.頻率分布直方圖中年齡在內(nèi)的人數(shù)為人,對(duì)應(yīng)的為,所以補(bǔ)全的頻率分布直方圖如下圖所示:(2)由頻數(shù)分布表知,在抽取的人中,年齡在內(nèi)的市民的人數(shù)為,記為,年齡在內(nèi)的市民的人數(shù)為,分別記為、、、.從這人中任取人的所有基本事件為:、、、、、、、、、,共個(gè)基本事件.記“恰有人的年齡在內(nèi)”為事件,則所包含的基本事件有個(gè):、、、,所以這人中恰有人的年齡在內(nèi)的概率為.【點(diǎn)睛】本題考查頻率分布直方圖和頻率分布表的應(yīng)用,同時(shí)也考查了古典概型概率公式計(jì)算概率,在列舉基本事件時(shí)要遵循不重不漏的基本原則,常用的是列舉法,也可以利用樹狀圖來(lái)輔助理解,考查運(yùn)算求解能力,屬于中等題.20、(1)證明見(jiàn)解析;(2);(3)當(dāng)時(shí),沒(méi)有零點(diǎn);當(dāng)時(shí),有且僅有一個(gè)零點(diǎn)【解析】
(1)求出函數(shù)定義域后直接用定義法即可證明;(2)由題意得,對(duì)兩邊同時(shí)平方得,求出的取值范圍即可得解;(3)轉(zhuǎn)化條件得,令,利用二次函數(shù)的性質(zhì)分類討論即可得解.【詳解】(1)證明:令,解得,故函數(shù)的定義域?yàn)榱睿桑傻茫裕始矗院瘮?shù)在定義域上單調(diào)遞增.(2)由,,故,,當(dāng)時(shí),,有,可得:,故,由,可得,故函數(shù)的值域?yàn)椋?)由(2)知,則,令,則,令,①當(dāng)時(shí),,此時(shí)函數(shù)沒(méi)有零點(diǎn),故函數(shù)也沒(méi)有零點(diǎn);②當(dāng)時(shí),二次函數(shù)的對(duì)稱軸為,則函數(shù)在區(qū)間單調(diào)遞增,而,,故函數(shù)有一個(gè)零點(diǎn),又由函數(shù)單調(diào)遞增,可得函數(shù)也只有一個(gè)零點(diǎn);③當(dāng)時(shí),,二次函數(shù)開口向下,對(duì)稱軸,又,,此時(shí)函數(shù)沒(méi)有零點(diǎn),故函數(shù)也沒(méi)有零點(diǎn).綜上,當(dāng)時(shí),函數(shù)沒(méi)有零點(diǎn);當(dāng)時(shí),函數(shù)有且僅有一個(gè)零點(diǎn).【點(diǎn)睛】本題考查了函數(shù)單調(diào)性的證明、值域的求解和零點(diǎn)問(wèn)題,考查了轉(zhuǎn)化化歸思想和分類討論
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業(yè)領(lǐng)域的新能源技術(shù)優(yōu)化與創(chuàng)新
- 工業(yè)設(shè)計(jì)與產(chǎn)業(yè)創(chuàng)新發(fā)展分析報(bào)告
- 工業(yè)設(shè)計(jì)創(chuàng)新與市場(chǎng)應(yīng)用研究
- 工作效率提升工具與方法介紹
- 工業(yè)風(fēng)辦公室裝修風(fēng)格及案例分享
- 工廠智能化改造的商業(yè)價(jià)值分析
- 工程施工質(zhì)量通病防治措施
- 工程機(jī)械液壓系統(tǒng)的故障處理
- 工程地質(zhì)學(xué)建筑基礎(chǔ)穩(wěn)定性研究
- 工程項(xiàng)目管理與質(zhì)量保障
- 項(xiàng)目部用工管理辦法
- 四川水利水電建筑工程預(yù)算定額
- 玩具訂貨合同范本
- 多旋翼飛行原理(改)
- 2024屆湖北省鄂東南聯(lián)盟數(shù)學(xué)高一下期末達(dá)標(biāo)檢測(cè)模擬試題含解析
- 鹽城市2023-2024學(xué)年三年級(jí)語(yǔ)文第二學(xué)期期末調(diào)研檢測(cè)模擬卷
- 如何做一個(gè)自律的人主題班會(huì)
- 2024絕經(jīng)后無(wú)癥狀子宮內(nèi)膜增厚診療中國(guó)專家共識(shí)(完整版)
- 《快遞企業(yè)安全管理》課件
- 冷板液冷標(biāo)準(zhǔn)化及技術(shù)優(yōu)化白皮書-2023.12
- 物理降溫法與熱療技術(shù)試題
評(píng)論
0/150
提交評(píng)論