山東省齊河縣重點名校中考押題數(shù)學預測卷及答案解析_第1頁
山東省齊河縣重點名校中考押題數(shù)學預測卷及答案解析_第2頁
山東省齊河縣重點名校中考押題數(shù)學預測卷及答案解析_第3頁
山東省齊河縣重點名校中考押題數(shù)學預測卷及答案解析_第4頁
山東省齊河縣重點名校中考押題數(shù)學預測卷及答案解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省齊河縣重點名校中考押題數(shù)學預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖是某零件的示意圖,它的俯視圖是()A. B. C. D.2.如圖是棋盤的一部分,建立適當?shù)钠矫嬷苯亲鴺讼担阎遄印败嚒钡淖鴺藶椋?2,1),棋子“馬”的坐標為(3,-1),則棋子“炮”的坐標為()A.(1,1) B.(2,1) C.(2,2) D.(3,1)3.如圖,在正方形ABCD外側,作等邊三角形ADE,AC,BE相交于點F,則∠BFC為()A.75° B.60° C.55° D.45°4.下列各圖中,∠1與∠2互為鄰補角的是()A. B.C. D.5.一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),它們離甲地的路程y(km)與客車行駛時間x(h)間的函數(shù)關系如圖,下列信息:(1)出租車的速度為100千米/時;(2)客車的速度為60千米/時;(3)兩車相遇時,客車行駛了3.75小時;(4)相遇時,出租車離甲地的路程為225千米.其中正確的個數(shù)有()A.1個 B.2個 C.3個 D.4個6.已知x﹣2y=3,那么代數(shù)式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.97.小帶和小路兩個人開車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時間t(h)之間的函數(shù)關系如圖所示.有下列結論;①A,B兩城相距300km;②小路的車比小帶的車晚出發(fā)1h,卻早到1h;③小路的車出發(fā)后2.5h追上小帶的車;④當小帶和小路的車相距50km時,t=或t=.其中正確的結論有()A.①②③④ B.①②④C.①② D.②③④8.如圖,已知點A,B分別是反比例函數(shù)y=(x<0),y=(x>0)的圖象上的點,且∠AOB=90°,tan∠BAO=,則k的值為()A.2 B.﹣2 C.4 D.﹣49.如圖,在正方形ABCD中,E為AB的中點,G,F(xiàn)分別為AD、BC邊上的點,若AG=1,BF=2,∠GEF=90°,則GF的長為()A.2 B.3 C.4 D.510.民族圖案是數(shù)學文化中的一塊瑰寶.下列圖案中,既不是中心對稱圖形也不是軸對稱圖形的是()

A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖是“已知一條直角邊和斜邊作直角三角形”的尺規(guī)作圖過程已知:線段a、b,求作:.使得斜邊AB=b,AC=a作法:如圖.(1)作射線AP,截取線段AB=b;(2)以AB為直徑,作⊙O;(3)以點A為圓心,a的長為半徑作弧交⊙O于點C;(4)連接AC、CB.即為所求作的直角三角形.請回答:該尺規(guī)作圖的依據(jù)是______.12.在△ABC中,AB=1,BC=2,以AC為邊作等邊三角形ACD,連接BD,則線段BD的最大值為_____.13.不等式組的解集為____.14.如圖,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一點,將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,則∠ADB′等于_____.15.比較大小:_____.(填“<“,“=“,“>“)16.關于x的一元二次方程x2﹣2kx+k2﹣k=0的兩個實數(shù)根分別是x1、x2,且x12+x22=4,則x12﹣x1x2+x22的值是_____.三、解答題(共8題,共72分)17.(8分)如圖,四邊形ABCD為平行四邊形,∠BAD的角平分線AF交CD于點E,交BC的延長線于點F.(1)求證:BF=CD;(2)連接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四邊形ABCD的周長.18.(8分)2013年3月,某煤礦發(fā)生瓦斯爆炸,該地救援隊立即趕赴現(xiàn)場進行救援,救援隊利用生命探測儀在地面A、B兩個探測點探測到C處有生命跡象.已知A、B兩點相距4米,探測線與地面的夾角分別是30°和45°,試確定生命所在點C的深度.(精確到0.1米,參考數(shù)據(jù):)19.(8分)如圖,已知△ABC,分別以AB,AC為直角邊,向外作等腰直角三角形ABE和等腰直角三角形ACD,∠EAB=∠DAC=90°,連結BD,CE交于點F,設AB=m,BC=n.(1)求證:∠BDA=∠ECA.(2)若m=,n=3,∠ABC=75°,求BD的長.(3)當∠ABC=____時,BD最大,最大值為____(用含m,n的代數(shù)式表示)(4)試探究線段BF,AE,EF三者之間的數(shù)量關系。20.(8分)某經銷商經銷的冰箱二月份的售價比一月份每臺降價500元,已知賣出相同數(shù)量的冰箱一月份的銷售額為9萬元,二月份的銷售額只有8萬元.(1)二月份冰箱每臺售價為多少元?(2)為了提高利潤,該經銷商計劃三月份再購進洗衣機進行銷售,已知洗衣機每臺進價為4000元,冰箱每臺進價為3500元,預計用不多于7.6萬元的資金購進這兩種家電共20臺,設冰箱為y臺(y≤12),請問有幾種進貨方案?(3)三月份為了促銷,該經銷商決定在二月份售價的基礎上,每售出一臺冰箱再返還顧客現(xiàn)金a元,而洗衣機按每臺4400元銷售,這種情況下,若(2)中各方案獲得的利潤相同,則a應取何值?21.(8分)今年3月12日植樹節(jié)期間,學校預購進A,B兩種樹苗.若購進A種樹苗3棵,B種樹苗5棵,需2100元;若購進A種樹苗4棵,B種樹苗10棵,需3800元.求購進A,B兩種樹苗的單價;若該學校準備用不多于8000元的錢購進這兩種樹苗共30棵,求A種樹苗至少需購進多少棵.22.(10分)在一個不透明的盒子里裝有只有顏色不同的黑、白兩種球共40個,小穎做摸球實驗,她將盒子里面的球攪勻后從中隨機摸出一個球記下顏色,再把它放回盒子中,不斷重復上述過程,下表是實驗中的一組統(tǒng)計數(shù)據(jù):摸球的次數(shù)n10020030050080010003000摸到白球的次數(shù)m651241783024815991803摸到白球的頻率0.650.620.5930.6040.6010.5990.601(1)請估計:當n很大時,摸到白球的頻率將會接近;(精確到0.1)假如你摸一次,你摸到白球的概率P(白球)=;試估算盒子里黑、白兩種顏色的球各有多少只?23.(12分)如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=m求反比例函數(shù)和一次函數(shù)的解析式;直接寫出當x>0時,kx+b<m24.我校春晚遴選男女主持人各一名,甲乙丙三班各派出一名男生和一名女生去參加主持人精選。(1)選中的男主持人為甲班的頻率是(2)選中的男女主持人均為甲班的概率是多少?(用樹狀圖或列表)

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】

物體的俯視圖,即是從上面看物體得到的結果;根據(jù)三視圖的定義,從上面看物體可以看到是一個正六邊形,里面是一個沒有圓心的圓,由此可以確定答案.【詳解】從上面看是一個正六邊形,里面是一個沒有圓心的圓.故答案選C.【點睛】本題考查了幾何體的三視圖,解題的關鍵是熟練的掌握幾何體三視圖的定義.2、B【解析】

直接利用已知點坐標建立平面直角坐標系進而得出答案.【詳解】解:根據(jù)棋子“車”的坐標為(-2,1),建立如下平面直角坐標系:∴棋子“炮”的坐標為(2,1),故答案為:B.【點睛】本題考查了坐標確定位置,正確建立平面直角坐標系是解題的關鍵.3、B【解析】

由正方形的性質和等邊三角形的性質得出∠BAE=150°,AB=AE,由等腰三角形的性質和內角和定理得出∠ABE=∠AEB=15°,再運用三角形的外角性質即可得出結果.【詳解】解:∵四邊形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等邊三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故選:B.【點睛】本題考查了正方形的性質、等邊三角形的性質、等腰三角形的判定與性質、三角形的外角性質;熟練掌握正方形和等邊三角形的性質,并能進行推理計算是解決問題的關鍵.4、D【解析】根據(jù)鄰補角的定義可知:只有D圖中的是鄰補角,其它都不是.故選D.5、D【解析】

根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以判斷各個小題是否正確,從而可以解答本題.【詳解】由圖象可得,出租車的速度為:600÷6=100千米/時,故(1)正確,客車的速度為:600÷10=60千米/時,故(2)正確,兩車相遇時,客車行駛時間為:600÷(100+60)=3.75(小時),故(3)正確,相遇時,出租車離甲地的路程為:60×3.75=225千米,故(4)正確,故選D.【點睛】本題考查一次函數(shù)的應用,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.6、A【解析】

解:∵x﹣2y=3,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故選A.7、C【解析】

觀察圖象可判斷①②,由圖象所給數(shù)據(jù)可求得小帶、小路兩車離開A城的距離y與時間t的關系式,可求得兩函數(shù)圖象的交點,可判斷③,再令兩函數(shù)解析式的差為50,可求得t,可判斷④,可得出答案.【詳解】由圖象可知A,B兩城市之間的距離為300km,小帶行駛的時間為5h,而小路是在小帶出發(fā)1h后出發(fā)的,且用時3h,即比小帶早到1h,∴①②都正確;設小帶車離開A城的距離y與t的關系式為y小帶=kt,把(5,300)代入可求得k=60,∴y小帶=60t,設小路車離開A城的距離y與t的關系式為y小路=mt+n,把(1,0)和(4,300)代入可得解得∴y小路=100t-100,令y小帶=y(tǒng)小路,可得60t=100t-100,解得t=2.5,即小帶和小路兩直線的交點橫坐標為t=2.5,此時小路出發(fā)時間為1.5h,即小路車出發(fā)1.5h后追上甲車,∴③不正確;令|y小帶-y小路|=50,可得|60t-100t+100|=50,即|100-40t|=50,當100-40t=50時,可解得t=,當100-40t=-50時,可解得t=,又當t=時,y小帶=50,此時小路還沒出發(fā),當t=時,小路到達B城,y小帶=250.綜上可知當t的值為或或或時,兩車相距50km,∴④不正確.故選C.【點睛】本題主要考查一次函數(shù)的應用,掌握一次函數(shù)圖象的意義是解題的關鍵,特別注意t是甲車所用的時間.8、D【解析】

首先過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,易得△OBD∽△AOC,又由點A,B分別在反比例函數(shù)y=(x<0),y=(x>0)的圖象上,即可得S△OBD=,S△AOC=|k|,然后根據(jù)相似三角形面積的比等于相似比的平方,即可求出k的值【詳解】解:過點A作AC⊥x軸于C,過點B作BD⊥x軸于D,

∴∠ACO=∠ODB=90°,

∴∠OBD+∠BOD=90°,

∵∠AOB=90°,

∴∠BOD+∠AOC=90°,

∴∠OBD=∠AOC,

∴△OBD∽△AOC,

又∵∠AOB=90°,tan∠BAO=,

∴=,

∴=,即,

解得k=±4,

又∵k<0,

∴k=-4,

故選:D.【點睛】此題考查了相似三角形的判定與性質、反比例函數(shù)的性質以及直角三角形的性質.解題時注意掌握數(shù)形結合思想的應用,注意掌握輔助線的作法。9、B【解析】∵四邊形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB,∴△AEG∽△BFE,∴,又∵AE=BE,∴AE2=AG?BF=2,∴AE=(舍負),∴GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,∴GF的長為3,故選B.【點睛】本題考查了相似三角形的性質的應用,利用勾股定理即可得解,解題的關鍵是證明△AEG∽△BFE.10、C【解析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念,軸對稱圖形兩部分沿對稱軸折疊后可重合;中心對稱圖形是圖形沿對稱中心旋轉180度后與原圖重合.因此,A、不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;B、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤;C、不是軸對稱圖形,也不是中心對稱圖形,故本選項正確;D、是軸對稱圖形,也是中心對稱圖形,故本選項錯誤.故選C.二、填空題(本大題共6個小題,每小題3分,共18分)11、等圓的半徑相等,直徑所對的圓周角是直角,三角形定義【解析】

根據(jù)圓周角定理可判斷△ABC為直角三角形.【詳解】根據(jù)作圖得AB為直徑,則利用圓周角定理可判斷∠ACB=90°,從而得到△ABC滿足條件.故答案為:等圓的半徑相等,直徑所對的圓周角是直角,三角形定義.【點睛】本題考查了作圖﹣復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了圓周角定理.12、3【解析】

以AB為邊作等邊△ABE,由題意可證△AEC≌△ABD,可得BD=CE,根據(jù)三角形三邊關系,可求EC的最大值,即可求BD的最大值.【詳解】如圖:以AB為邊作等邊△ABE,

∵△ACD,△ABE是等邊三角形,

∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,

∴∠EAC=∠BAD,且AE=AB,AD=AC,

∴△DAB≌△CAE(SAS)

∴BD=CE,

若點E,點B,點C不共線時,EC<BC+BE;

若點E,點B,點C共線時,EC=BC+BE.

∴EC≤BC+BE=3,

∴EC的最大值為3,即BD的最大值為3.

故答案是:3【點睛】考查了旋轉的性質,等邊三角形的性質,全等三角形的判定和性質,以及三角形的三邊關系,恰當添加輔助線構造全等三角形是本題的關鍵.13、x>1【解析】

分別解出兩不等式的解集再求其公共解.【詳解】由①得:x>1

由②得:x>∴不等式組的解集是x>1.【點睛】求不等式的解集須遵循以下原則:同大取較大,同小取較小.小大大小中間找,大大小小解不了.14、40°.【解析】

∵將Rt△ABC沿CD折疊,使點B落在AC邊上的B′處,∴∠ACD=∠BCD,∠CDB=∠CDB′,∵∠ACB=90°,∠A=25°,∴∠ACD=∠BCD=45°,∠B=90°﹣25°=65°,∴∠BDC=∠B′DC=180°﹣45°﹣65°=70°,∴∠ADB′=180°﹣70°﹣70°=40°.故答案為40°.15、<【解析】

先比較它們的平方,進而可比較與的大小.【詳解】()2=80,()2=100,∵80<100,∴<.故答案為:<.【點睛】本題考查了實數(shù)的大小比較,帶二次根號的實數(shù),在比較它們的大小時,通常先比較它們的平方的大小.16、1【解析】【分析】根據(jù)根與系數(shù)的關系結合x1+x2=x1?x2可得出關于k的一元二次方程,解之即可得出k的值,再根據(jù)方程有實數(shù)根結合根的判別式即可得出關于k的一元二次不等式,解之即可得出k的取值范圍,從而可確定k的值.【詳解】∵x2﹣2kx+k2﹣k=0的兩個實數(shù)根分別是x1、x2,∴x1+x2=2k,x1?x2=k2﹣k,∵x12+x22=1,∴(x1+x2)2-2x1x2=1,(2k)2﹣2(k2﹣k)=1,2k2+2k﹣1=0,k2+k﹣2=0,k=﹣2或1,∵△=(﹣2k)2﹣1×1×(k2﹣k)≥0,k≥0,∴k=1,∴x1?x2=k2﹣k=0,∴x12﹣x1x2+x22=1﹣0=1,故答案為:1.【點睛】本題考查了根的判別式以及根與系數(shù)的關系,熟練掌握“當一元二次方程有實數(shù)根時,根的判別式△≥0”是解題的關鍵.三、解答題(共8題,共72分)17、(1)證明見解析;(2)12【解析】

(1)由平行四邊形的性質和角平分線得出∠BAF=∠BFA,即可得出AB=BF;(2)由題意可證△ABF為等邊三角形,點E是AF的中點.可求EF、BF的值,即可得解.【詳解】解:(1)證明:∵四邊形ABCD為平行四邊形,∴AB=CD,∠FAD=∠AFB又∵AF平分∠BAD,∴∠FAD=∠FAB∴∠AFB=∠FAB∴AB=BF∴BF=CD(2)解:由題意可證△ABF為等邊三角形,點E是AF的中點在Rt△BEF中,∠BFA=60°,BE=,可求EF=2,BF=4∴平行四邊形ABCD的周長為1218、5.5米【解析】

過點C作CD⊥AB于點D,設CD=x,在Rt△ACD中表示出AD,在Rt△BCD中表示出BD,再由AB=4米,即可得出關于x的方程,解出即可.【詳解】解:過點C作CD⊥AB于點D,設CD=x,在Rt△ACD中,∠CAD=30°,則AD=CD=x.在Rt△BCD中,∠CBD=45°,則BD=CD=x.由題意得,x﹣x=4,解得:.答:生命所在點C的深度為5.5米.19、135°m+n【解析】試題分析:(1)由已知條件證△ABD≌△AEC,即可得到∠BDA=∠CEA;(2)過點E作EG⊥CB交CB的延長線于點G,由已知條件易得∠EBG=60°,BE=2,這樣在Rt△BEG中可得EG=,BG=1,結合BC=n=3,可得GC=4,由長可得EC=,結合△ABD≌△AEC可得BD=EC=;(3)由(2)可知,BE=,BC=n,因此當E、B、C三點共線時,EC最大=BE+BC=,此時BD最大=EC最大=;(4)由△ABD≌△AEC可得∠AEC=∠ABD,結合△ABE是等腰直角三角形可得△EFB是直角三角形及BE2=2AE2,從而可得EF2=BE2-BF2=2AE2-BF2.試題解析:(1)∵△ABE和△ACD都是等腰直角三角形,且∠EAB=∠DAC=90°,∴AE=AB,AC=AD,∠EAB+∠BAC=∠BAC+∠DAC,即∠EAC=∠BAD,∴△EAC≌△BAD,∴∠BDA=∠ECA;(2)如下圖,過點E作EG⊥CB交CB的延長線于點G,∴∠EGB=90°,∵在等腰直角△ABE,∠BAE=90°,AB=m=,∴∠ABE=45°,BE=2,∵∠ABC=75°,∴∠EBG=180°-75°-45°=60°,∴BG=1,EG=,∴GC=BG+BC=4,∴CE=,∵△EAC≌△BAD,∴BD=EC=;(3)由(2)可知,BE=,BC=n,因此當E、B、C三點共線時,EC最大=BE+BC=,∵BD=EC,∴BD最大=EC最大=,此時∠ABC=180°-∠ABE=180°-45°=135°,即當∠ABC=135°時,BD最大=;(4)∵△ABD≌△AEC,∴∠AEC=∠ABD,∵在等腰直角△ABE中,∠AEC+∠CEB+∠ABE=90°,∴∠ABD+∠ABE+∠CEB=90°,∴∠BFE=180°-90°=90°,∴EF2+BF2=BE2,又∵在等腰Rt△ABE中,BE2=2AE2,∴2AE2=EF2+BF2.點睛:(1)解本題第2小題的關鍵是過點E作EG⊥CB的延長線于點G,即可由已知條件求得BE的長,進一步求得BG和EG的長就可在Rt△EGC中求得EC的長了,結合(1)中所證的全等三角形即可得到BD的長了;(2)解第3小題時,由題意易知,當AB和BC的值確定后,BE的值就確定了,則由題意易得當E、B、C三點共線時,EC=EB+BC=是EC的最大值了.20、(1)二月份冰箱每臺售價為4000元;(2)有五種購貨方案;(3)a的值為1.【解析】

(1)設二月份冰箱每臺售價為x元,則一月份冰箱每臺售價為(x+500)元,根據(jù)數(shù)量=總價÷單價結合賣出相同數(shù)量的冰箱一月份的銷售額為9萬元而二月份的銷售額只有3萬元,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)根據(jù)總價=單價×數(shù)量結合預計用不多于7.6萬元的資金購進這兩種家電共20臺,即可得出關于y的一元一次不等式,解之即可得出y的取值范圍,結合y≤2及y為正整數(shù),即可得出各進貨方案;(3)設總獲利為w,購進冰箱為m臺,洗衣機為(20﹣m)臺,根據(jù)總利潤=單臺利潤×購進數(shù)量,即可得出w關于m的函數(shù)關系式,由w為定值即可求出a的值.【詳解】(1)設二月份冰箱每臺售價為x元,則一月份冰箱每臺售價為(x+500)元,根據(jù)題意,得:=,解得:x=4000,經檢驗,x=4000是原方程的根.答:二月份冰箱每臺售價為4000元.(2)根據(jù)題意,得:3500y+4000(20﹣y)≤76000,解得:y≥3,∵y≤2且y為整數(shù),∴y=3,9,10,11,2.∴洗衣機的臺數(shù)為:2,11,10,9,3.∴有五種購貨方案.(3)設總獲利為w,購進冰箱為m臺,洗衣機為(20﹣m)臺,根據(jù)題意,得:w=(4000﹣3500﹣a)m+(4400﹣4000)(20﹣m)=(1﹣a)m+3000,∵(2)中的各方案利潤相同,∴1﹣a=0,∴a=1.答:a的值為1.【點睛】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據(jù)各數(shù)量間的關系,正確列出一元一次不等式;(3)利用總利潤=單臺利潤×購進數(shù)量,找出w關于m的函數(shù)關系式.21、(1)A種樹苗的單價為200元,B種樹苗的單價為300元;(2)10棵【解析】試題分析:(1)設B種樹苗的單價為x元,則A種樹苗的單價為y元.則由等量關系列出方程組解答即可;(2)設購買A種樹苗a棵,則B種樹苗為(30﹣

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論