




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省永春縣一中2024年高一數學第二學期期末教學質量檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若實數,滿足不等式組則的最大值為()A. B.2 C.5 D.72.若函數在一個周期內的圖象如圖所示,且在軸上的截距為,分別是這段圖象的最高點和最低點,則在方向上的投影為()A. B. C. D.3.已知α,β是兩個不同的平面,m,n是兩條不同的直線,給出下列命題:①若m∥α,m∥β,則α∥β②若m?α,n?α,m∥β,n∥β,則α∥β;③m?α,n?β,m、n是異面直線,那么n與α相交;④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.其中正確的命題是()A.①② B.②③ C.③④ D.④4.函數的零點有兩個,求實數的取值范圍()A. B.或 C.或 D.5.若f(x)=af1(x)bf2(x)a,b∈R已知g1(x)=(-x2+12x-20)12生成函數g(x),已知g(4)=2(6-3),A.1 B.4 C.6 D.96.已知平面四邊形滿足,,,則的長為()A.2 B. C. D.7.執行下圖所示的程序框圖,若輸出的,則輸入的x為()A.0 B.1 C.0或1 D.0或e8.已知是兩條不同直線,是三個不同平面,下列命題中正確的是()A.若則 B.若則C.若則 D.若則9.在中,,,,則的面積是()A. B. C.或 D.或10.在區間上隨機選取一個數,則滿足的概率為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.在,若,,,則__________________.12.已知數列滿足,(),則________.13.已知在數列中,,,則數列的通項公式______.14.在數列中,若,(),則________15.和的等差中項為__________.16.在平面直角坐標系中,點在第二象限,,,則向量的坐標為________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,四邊形是平行四邊形,平面平面,,,,,,,為的中點.(1)求證:平面;(2)求證:平面平面.18.如圖,在四棱錐中,底面,,,,,點為棱的中點.(1)證明:;(2)求三棱錐的體積.19.是亞太區域國家與地區加強多邊經濟聯系、交流與合作的重要組織,其宗旨和目標是“相互依存、共同利益,堅持開放性多邊貿易體制和減少區域間貿易壁壘.”2017年會議于11月10日至11日在越南峴港舉行.某研究機構為了了解各年齡層對會議的關注程度,隨機選取了100名年齡在內的市民進行了調查,并將結果繪制成如圖所示的頻率分布直方圖(分組區間分別為,,,,).(1)求選取的市民年齡在內的人數;(2)若從第3,4組用分層抽樣的方法選取5名市民進行座談,再從中選取2人參與會議的宣傳活動,求參與宣傳活動的市民中至少有一人的年齡在內的概率.20.已知函數.(1)求證:;(2)若角滿足,求銳角的取值范圍.21.“精準扶貧”的重要思想最早在2013年11月提出,到湘西考察時首次作出“實事求是,因地制宜,分類指導,精準扶貧”的重要指導。2015年在貴州調研時強調要科學謀劃好“十三五”時期精準扶貧開發工作,確保貧困人口到2020年如期脫貧。某農科所實地考察,研究發現某貧困村適合種植A、B兩種藥材,可以通過種植這兩種藥材脫貧。通過大量考察研究得到如下統計數據:藥材A的畝產量約為300公斤,其收購價格處于上漲趨勢,最近五年的價格如下表:編號12345年份20152016201720182019單價(元/公斤)1820232529藥材B的收購價格始終為20元/公斤,其畝產量的頻率分布直方圖如下:(1)若藥材A的單價(單位:元/公斤)與年份編號具有線性相關關系,請求出關于的回歸直線方程,并估計2020年藥材A的單價;(2)用上述頻率分布直方圖估計藥材B的平均畝產量,若不考慮其他因素,試判斷2020年該村應種植藥材A還是藥材B?并說明理由.附:,.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
利用線性規劃數形結合分析解答.【詳解】由約束條件,作出可行域如圖:由得A(3,-2).由,化為,由圖可知,當直線過點時,直線在軸上的截距最小,有最大值為5.故選C.【點睛】本題主要考查利用線性規劃求最值,意在考查學生對該知識的理解掌握水平,屬于基礎題.2、D【解析】
根據圖象求出函數的解析式,然后求出點的坐標,進而可得所求結果.【詳解】根據函數在一個周期內的圖象,可得,∴.再根據五點法作圖可得,∴,∴函數的解析式為.∵該函數在y軸上的截距為,∴,∴,故函數的解析式為.∴,∴,又,∴向量在方向上的投影為.故選D.【點睛】解答本題的關鍵有兩個:一是正確求出函數的解析式,進而得到兩點的坐標,此處要靈活運用“五點法”求出的值;二是注意一個向量在另一個向量方向上的投影的概念,屬于基礎題.3、D【解析】
利用平面與平面垂直和平行的判定和性質,直線與平面平行的判斷,對選項逐一判斷即可.【詳解】①若m∥α,m∥β,則α∥β或α與β相交,錯誤命題;②若m?α,n?α,m∥β,n∥β,則α∥β或α與β相交.錯誤的命題;③m?α,n?β,m、n是異面直線,那么n與α相交,也可能n∥α,是錯誤命題;④若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β.是正確的命題.故選D.【點睛】本題考查平面與平面的位置關系,直線與平面的位置關系,考查空間想象力,屬于中檔題.4、B【解析】
由題意可得,的圖象(紅色部分)和直線有2個交點,數形結合求得的范圍.【詳解】由題意可得的圖象(紅色部分)和直線有2個交點,如圖所示:故有或,故選:B.【點睛】已知函數零點(方程根)的個數,求參數取值范圍的三種常用的方法:(1)直接法,直接根據題設條件構建關于參數的不等式,再通過解不等式確定參數范圍;(2)分離參數法,先將參數分離,轉化成求函數值域問題加以解決;(3)數形結合法,先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解.一是轉化為兩個函數的圖象的交點個數問題,畫出兩個函數的圖象,其交點的個數就是函數零點的個數,二是轉化為的圖象的交點個數問題.5、B【解析】
根據變換T(m,n)可生成函數g(x)=mg2(x)-ng1(x)=m(-x2+10x)1【詳解】由題意可知g(x)=mg又g(4)=2(6-解得m=n=1,所以g(x)=又g(x)=10-x因為y=1x+x-2在x∈[2,10]上單調遞減且為正值,y=10-x在x∈[2,10]上單調遞減且為正值,所以g(x)=10-x(【點睛】本題主要考查了函數的單調性,利用單調性求函數的最大值,涉及創設新情景及函數式的變形,屬于難題6、B【解析】
先建系,再結合兩點的距離公式、向量的數量積及模的運算,求解即可得解.【詳解】解:建立如圖所示的平面直角坐標系,則,設,由,則,所以,又,所以,,即,故選:B.【點睛】本題考查了兩點的距離公式,重點考查了向量的數量積運算及模的運算,屬中檔題.7、C【解析】
根據程序框圖,分兩種情況討論,即可求得對應的的值.【詳解】當輸出結果為時.當,則,解得當,則,解得綜上可知,輸入的或故選:C【點睛】本題考查了程序框圖的簡單應用,指數方程與對數方程的解法,屬于基礎題.8、D【解析】
A項,可能相交或異面,當時,存在,,故A項錯誤;B項,可能相交或垂直,當
時,存在,,故B項錯誤;C項,可能相交或垂直,當
時,存在,,故C項錯誤;D項,垂直于同一平面的兩條直線相互平行,故D項正確,故選D.本題主要考查的是對線,面關系的理解以及對空間的想象能力.考點:直線與平面、平面與平面平行的判定與性質;直線與平面、平面與平面垂直的判定與性質.9、C【解析】
先根據正弦定理求出角,從而求出角,再根據三角形的面積公式進行求解即可.【詳解】解:由,,,根據正弦定理得:,為三角形的內角,或,或在中,由,,或則面積或.故選C.【點睛】本題主要考查了正弦定理,三角形的面積公式以及特殊角的三角函數值,熟練掌握定理及公式是解本題的關鍵,屬于中檔題.10、D【解析】
在區間上,且滿足所得區間為,利用區間的長度比,即可求解.【詳解】由題意,在區間上,且滿足所得區間為,由長度比的幾何概型,可得概率為,故選D.【點睛】本題主要考查了長度比的幾何概型的概率的計算,其中解答中認真審題,合理利用長度比求解是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
由,故用二倍角公式算出,再用余弦定理算得即可.【詳解】,又,,又,代入得,所以.故答案為【點睛】本題主要考查二倍角公式與余弦定理,屬于基礎題型.12、31【解析】
根據數列的首項及遞推公式依次求出、、……即可.【詳解】解:,故答案為:【點睛】本題考查利用遞推公式求出數列的項,屬于基礎題.13、【解析】
通過變形可知,累乘計算即得結論.【詳解】∵(n+1)an=nan+1,∴,∴,,…,,累乘得:,又∵a1=1,∴an=n,故答案為:an=n.【點睛】本題考查數列的通項公式的求法,利用累乘法是解決本題的關鍵,注意解題方法的積累,屬于中檔題.14、【解析】
由題意,得到數列表示首項為1,公差為2的等差數列,結合等差數列的通項公式,即可求解.【詳解】由題意,數列中,滿足,(),即(),所以數列表示首項為1,公差為2的等差數列,所以.故答案為:【點睛】本題主要考查了等差數列的定義和通項公式的應用,其中解答中熟記等差數列的定義,合理利用數列的通項公式求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.15、【解析】
設和的等差中項為,利用等差中項公式可得出的值.【詳解】設和的等差中項為,由等差中項公式可得,故答案為:.【點睛】本題考查等差中項的求解,解題時要充分利用等差中項公式來求解,考查計算能力,屬于基礎題.16、【解析】
由三角函數的定義求出點的坐標,然后求向量的坐標.【詳解】設點,由三角函數的定義有,得,,得,所以,所以故答案為:【點睛】本題考查三角函數的定義的應用和已知點的坐標求向量坐標,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】
(1)取中點,連接,,利用三角形中位線定理,結合已知,可以證明出四邊形為平行四邊形,利用平行四邊形的性質和線面平行的判定定理可以證明出平面;(2)在中,利用余弦定理可以求出的值,利用勾股定理的逆定理可以得,由平面平面,利用面面垂直的性質定理,可以得到平面,最后利用面面垂直的判斷定理可以證明出平面平面.【詳解】(1)取中點,連接,,在中,因為是中點所以且又因為,,所以且,即四邊形為平行四邊形,所以,又平面,平面平面.(2)在中,,,由余弦定理得,進而由勾股定理的逆定理得又因為平面,平面,又因為平面所以平面又平面,所以平面平面【點睛】本題考查了線面平行、面面垂直的證明,考查了線面平行的判斷定理、面面垂直的性質定理和判定定理,考查了推理論證能力.18、(1)見解析;(2)【解析】
(1)以A為坐標原點,建立如圖所示的空間直角坐標系,求出BE,DC的方向向量,根據?=0,可得BE⊥DC;(2)由點為棱的中點,且底面,利用等體積法得.【詳解】(1)∵底面,,以為坐標原點,建立如圖所示的空間直角坐標系,∵,,點為棱的中點.∴(1,0,0),(2,2,0),(0,2,0),(0,0,2),(1,1,1)∴=(0,1,1),=(2,0,0),∵?=0,可得BE⊥DC;(2)由點為棱的中點,且底面,利用等體積法得.【點睛】本題考查了空間線面垂直的判定,利用了向量法,也考查了等體積法求體積,屬于中檔題.19、(1)30人;(2).【解析】
(1)由頻率分布直方圖,先求出年齡在內的頻率,進而可求出人數;(2)先由分層抽樣,確定應從第3,4組中分別抽取3人,2人,記第3組的3名志愿者分別為,第4組的2名志愿者分別為,再用列舉法,分別列舉出總的基本事件,以及滿足條件的基本事件,基本事件個數比即為所求概率.【詳解】(1)由題意可知,年齡在內的頻率為,故年齡在內的市民人數為.(2)易知,第4組的人數為,故第3,4組共有50名市民,所以用分層抽樣的方法在50名志愿者中抽取5名志愿者,每組抽取的人數分別為:第3組;第4組.所以應從第3,4組中分別抽取3人,2人.記第3組的3名志愿者分別為,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 髖關節置換術后護理要點
- 協會和社區共建協議書
- 長期員工勞務協議書
- 冰淇淋門店托管協議書
- 保安試用期合同協議書
- 鄰里解決糾紛協議書
- 雇員簽定免責協議書
- 資質服務托管協議書
- 銷售代理軟件協議書
- 兩個幼兒園合并協議書
- 2025屆福建省漳州市高三第三次教學質量檢測生物試卷(解析版)
- 2025年茶葉加工工職業技能競賽參考試題庫500題(含答案)
- 2025甘肅陜煤集團韓城煤礦招聘250人筆試參考題庫附帶答案詳解
- 《設計課件:構建高效數據集教程》
- 2025江蘇中考:歷史高頻考點
- 普通測量學試題及答案
- SL631水利水電工程單元工程施工質量驗收標準第1部分:土石方工程
- 廣東省2024年中考數學試卷【附真題答案】
- 監控立桿基礎國家標準
- 《北京市房屋建筑和市政基礎設施工程竣工驗收管理辦法》(2015年4月1日起實施)
- 臨建施工方案(經典)
評論
0/150
提交評論