




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省黃山市屯溪區第二中學2024屆高一數學第二學期期末質量跟蹤監視模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.從裝有2個紅球和2個黑球的口袋內任取2個球,則互斥而不對立的兩個事件是()A.恰有1個黑球與恰有2個黑球 B.至少有一個紅球與都是黑球C.至少有一個黑球與至少有1個紅球 D.至少有一個黑球與都是黑球2.已知變量和滿足關系,變量與正相關.下列結論中正確的是()A.與負相關,與負相關B.與正相關,與正相關C.與正相關,與負相關D.與負相關,與正相關3.已知為直線,,為兩個不同的平面,則下列結論正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則4.已知滿足,則()A.1 B.3 C.5 D.75.“是第二象限角”是“是鈍角”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既不充分也不必要6.將函數的圖象上所有的點向右平行移動個單位長度,再把所得各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數解析式是()A. B.C. D.7.直線與直線垂直,則的值為()A.3 B. C.2 D.8.閱讀如圖的程序框圖,運行該程序,則輸出的值為()A.3 B.1C.-1 D.09.若直線kx+(1-k)y-3=0和直線(k-1)x+(2k+3)y-2=0互相垂直,則k=()A.-3或-1 B.3或1 C.-3或1 D.-1或310.設是等比數列,則“”是“數列是遞增數列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.兩個實習生加工一個零件,產品為一等品的概率分別為和,則這兩個零件中恰有一個一等品的概率為__________.12.已知,若直線與直線垂直,則的最小值為_____13.已知函數,它的值域是__________.14.數列是等比數列,,,則的值是________.15.已知點P(tanα,cosα)在第三象限,則角α的終邊在第________象限.16.不等式的解集是_________________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,邊長為2的正方形中.(1)點是的中點,點是的中點,將、分別沿,折起,使,兩點重合于點,求證:;(2)當時,將、分別沿,折起,使,兩點重合于點,求三棱錐的體積.18.在等比數列中,,.(1)求的通項公式;(2)若,求數列的前項和.19.已知平面向量,=(2x+3,-x),(x∈R).(1)若向量與向量垂直,求;(2)若與夾角為銳角,求的取值范圍.20.在中,內角A、B、C所對的邊分別為,,,已知.(Ⅰ)求角B的大小;(Ⅱ)設,,求.21.某種植園在芒果臨近成熟時,隨機從一些芒果樹上摘下100個芒果,其質量分別在,,,,,(單位:克)中,經統計得頻率分布直方圖如圖所示.(1)經計算估計這組數據的中位數;(2)現按分層抽樣從質量為,的芒果中隨機抽取6個,再從這6個中隨機抽取3個,求這3個芒果中恰有1個在內的概率.(3)某經銷商來收購芒果,以各組數據的中間數代表這組數據的平均值,用樣本估計總體,該種植園中還未摘下的芒果大約還有10000個,經銷商提出如下兩種收購方案:A:所有芒果以10元/千克收購;B:對質量低于250克的芒果以2元/個收購,高于或等于250克的以3元/個收購,通過計算確定種植園選擇哪種方案獲利更多?
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
從裝有2個紅球和2個黑球的口袋中任取2個球,包括3種情況:①恰有一個黑球,②恰有兩個黑球,③沒有黑球.
故恰有一個黑球與恰有兩個黑球不可能同時發生,它們是互斥事件,再由這兩件事的和不是必然事件,故他們是互斥但不對立的事件,
故選:A.2、A【解析】
因為變量和滿足關系,一次項系數為,所以與負相關;變量與正相關,設,所以,得到,一次項系數小于零,所以與負相關,故選A.3、C【解析】
利用直線與平面平行、垂直的判斷即可。【詳解】對于A.若,,則或,所以A錯對于B.若,,則,應該為,所以B錯對于D.若,,則或,所以D錯。所以選擇C【點睛】本題主要考查了直線與平面垂直和直線與平面平行的性質。屬于基礎題。4、B【解析】
已知兩個邊和一個角,由余弦定理,可得。【詳解】由題得,,,代入,化簡得,解得(舍)或.故選:B【點睛】本題考查用余弦定理求三角形的邊,是基礎題。5、B【解析】
由α是鈍角可得α是第二象限角,反之不成立,則答案可求.【詳解】若α是鈍角,則α是第二象限角;反之,若α是第二象限角,α不一定是鈍角,如α=﹣210°.∴“α是第二象限角”是“α是鈍角”的必要非充分條件.故選B.【點睛】本題考查鈍角、象限角的概念,考查了充分必要條件的判斷方法,是基礎題.6、C【解析】
將函數的圖象上所有的點向右平行移動個單位長度,所得函數圖象的解析式為y=sin(x-);再把所得圖象上各點的橫坐標伸長到原來的2倍(縱坐標不變),所得圖象的函數解析式是.故選C.7、A【解析】
根據兩條直線垂直的條件列方程,解方程求得的值.【詳解】由于直線與直線垂直,所以,解得.故選:A【點睛】本小題主要考查兩條直線垂直的條件,屬于基礎題.8、D【解析】
從起始條件、開始執行程序框圖,直到終止循環.【詳解】,,,,,輸出.【點睛】本題是直到型循環,只要滿足判斷框中的條件,就終止循環,考查讀懂簡單的程序框圖.9、C【解析】
直接利用兩直線垂直的充要條件列方程求解即可.【詳解】因為直線kx+(1-k)y-3=0和直線(k-1)x+(2k+3)y-2=0互相垂直,所以k(k-1)+(1-k)(2k+3)=0,解方程可得k=1或k=-3,故選C.【點睛】本題主要考查直線與直線垂直的充要條件,屬于基礎題.對直線位置關系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關系:在斜率存在的前提下,(1)l1||l2?k110、B【解析】
由,可得,解得或,根據等比數列的單調性的判定方法,結合充分、必要條件的判定方法,即可求解,得到答案.【詳解】設等比數列的公比為,則,可得,解得或,此時數列不一定是遞增數列;若數列為遞增數列,可得或,所以“”是“數列為遞增數列”的必要不充分條件.故選:B.【點睛】本題主要考查了等比數列的通項公式與單調性,以及充分條件、必要條件的判定,其中解答中熟記等比數列的單調性的判定方法是解答本題的關鍵,著重考查了推理與運算能力,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用相互獨立事件概率乘法公式直接求解.【詳解】解:兩個實習生加工一個零件,產品為一等品的概率分別為和,這兩個零件中恰有一個一等品的概率為:.故答案為:.【點睛】本題考查概率的求法,考查相互獨立事件概率乘法公式等基礎知識,考查運算求解能力,屬于基礎題.12、8【解析】
兩直線斜率存在且互相垂直,由斜率乘積為-1求得等式,把目標式子化成,運用基本不等式求得最小值.【詳解】設直線的斜率為,,直線的斜率為,,兩條直線垂直,,整理得:,,等號成立當且僅當,的最小值為.【點睛】利用“1”的代換,轉化成可用基本不等式求最值,考查轉化與化歸的思想.13、【解析】
由反余弦函數的值域可求出函數的值域.【詳解】,,因此,函數的值域為.故答案為:.【點睛】本題考查反三角函數值域的求解,解題的關鍵就是依據反余弦函數的值域進行計算,考查計算能力,屬于基礎題.14、【解析】
由題得計算得解.【詳解】由題得,所以.因為等比數列同號,所以.故答案為:【點睛】本題主要考查等比數列的性質和等比中項的應用,意在考查學生對這些知識的理解掌握水平.15、二【解析】
由點P(tanα,cosα)在第三象限,得到tanα<0,cosα<0,從而得到α所在的象限.【詳解】因為點P(tanα,cosα)在第三象限,所以tanα<0,cosα<0,則角α的終邊在第二象限,故答案為二.點評:本題考查第三象限內的點的坐標的符號,以及三角函數在各個象限內的符號.16、【解析】
可先求出一元二次方程的兩根,即可得到不等式的解集.【詳解】由于的兩根分別為:,,因此不等式的解集是.【點睛】本題主要考查一元二次不等式的求解,難度不大.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2)【解析】
(1)折疊過程中,,保持不變,即,,由此可得線面垂直,從而有線線垂直;(2)由(1)知面,即是三棱錐的高,求出底面積可得體積.【詳解】(1)證明:由,.可得:,,,面又面(2)解:在三棱錐中,,,面,由,,可得.【點睛】本題考查證明線線垂直,考查求棱錐的體積.立體幾何中證明線線垂直,通常由線面垂直的性質定理給出,即先證線面垂直,而證線面垂直又必須證明線線垂直,注意線線垂直與線面垂直的轉化.三棱錐中任何一個面都可以當作底面,因此一般尋找高易得的面為底面,常用換底法求體積.18、(1);(2).【解析】
(1)設出通項公式,利用待定系數法即得結果;(2)先求出通項,利用錯位相減法可以得到前項和.【詳解】(1)因為,,所以,解得故的通項公式為.(2)由(1)可得,則,①,②①-②得故.【點睛】本題主要考查等比數列的通項公式,錯位相減法求和,意在考查學生的分析能力及計算能力,難度中等.19、(1)10或2;(2).【解析】
(1)由向量與向量垂直,求得或,進而求得的坐標,利用模的計算公式,即可求解;(2)因為與夾角為銳角,所以,且與不共線,列出不等關系式,即可求解.【詳解】(1)由題意,平面向量,,由向量與向量垂直,則,解得或,當時,,則,所;當時,,則,所,(2)因為與夾角為銳角,所以,且與不共線,即且,解得,且,即的取值范圍為.【點睛】本題主要考查了向量的坐標運算,以及向量的垂直條件,以及向量的數量積的應用,著重考查了推理運算能力,屬于基礎題.20、(Ⅰ);(Ⅱ).【解析】
(Ⅰ)在△ABC中,利用正弦定理及其.可得,利用和差公式化簡整理可得B.(Ⅱ)在△ABC中,利用余弦定理即可得出b.【詳解】(Ⅰ)在△ABC中,由正弦定理,又.可得,∴sinBcosBsinB,則.又∵B∈(0,π),可得.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,,∴b2=a2+c2﹣2accosB=4+9﹣2×2×3×cos7,解得.【點睛】本題考查了正弦定理、余弦定理、和差公式,考查了推理能力與計算能力,屬于中檔題.21、(1)中位數為268.75;(2);(3)選B方案【解析】
(1)根據中位數左右兩邊的頻率均為0.5求解即可.(2)利用枚舉法求出所以可能的情況,再利用古典概型方法求解概率即可.(3)分別計算兩種方案的獲利再比較大小即可.【詳解】(1)由頻率分布直方圖可得,前3組的頻率和為,前4組的頻率和為,所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 高中化學:《家鄉節日化學實驗與知識普及》論文
- 藝術班教師管理制度
- 蒼南登革熱管理制度
- 茶樓操作間管理制度
- 集中居住點管理制度
- 財務會計及財務管理知識分析理論版
- 財務會計的規章制度
- 行政許可法及案例分析
- 酒店的突發事件及案例
- 當前中國并購市場概況及典型案例分析
- 直播助農創業計劃書
- 核技術在環保領域的應用
- 弱電監控系統工程施工組織計劃書
- 新塘2標(南交通核)FAS、BAS施工方案
- 廣東省珠海市香洲區2023-2024學年七年級下學期期末歷史試題(原卷版)
- (高清版)AQ 2061-2018 金屬非金屬地下礦山防治水安全技術規范
- 12S108-2 真空破壞器選用與安裝
- 2024年武漢市中考數學真題試卷及答案解析
- 氣象信息服務行業市場突圍建議及需求分析報告
- TDT 1083-2023 國土調查數據庫更新數據規范
- 2024年天翼云從業者認證考試題庫(判斷題)
評論
0/150
提交評論