




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省達州市通川區市級名校2021-2022學年中考沖刺卷數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,點A、B、C在⊙O上,∠OAB=25°,則∠ACB的度數是()A.135° B.115° C.65° D.50°2.下表是某校合唱團成員的年齡分布.年齡/歲13141516頻數515x對于不同的x,下列關于年齡的統計量不會發生改變的是()A.眾數、中位數 B.平均數、中位數 C.平均數、方差 D.中位數、方差3.如圖,已知△ADE是△ABC繞點A逆時針旋轉所得,其中點D在射線AC上,設旋轉角為α,直線BC與直線DE交于點F,那么下列結論不正確的是()A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α4.如圖,在中,,將繞點逆時針旋轉,使點落在線段上的點處,點落在點處,則兩點間的距離為()A. B. C. D.5.如圖是本地區一種產品30天的銷售圖象,圖①是產品日銷售量y(單位:件)與時間t(單位;天)的函數關系,圖②是一件產品的銷售利潤z(單位:元)與時間t(單位:天)的函數關系,已知日銷售利潤=日銷售量×一件產品的銷售利潤,下列結論錯誤的是()A.第24天的銷售量為200件 B.第10天銷售一件產品的利潤是15元C.第12天與第30天這兩天的日銷售利潤相等 D.第27天的日銷售利潤是875元6.如圖,在⊙O中,點P是弦AB的中點,CD是過點P的直徑,則下列結論:①AB⊥CD;②∠AOB=4∠ACD;③弧AD=弧BD;④PO=PD,其中正確的個數是()A.4 B.1 C.2 D.37.如圖,已知AB、CD、EF都與BD垂直,垂足分別是B、D、F,且AB=1,CD=3,那么EF的長是()A. B. C. D.8.6的相反數為A.-6 B.6 C. D.9.已知,用尺規作圖的方法在上確定一點,使,則符合要求的作圖痕跡是()A. B.C. D.10.如圖是某幾何體的三視圖,則該幾何體的全面積等于()A.112 B.136 C.124 D.8411.如下字體的四個漢字中,是軸對稱圖形的是()A. B. C. D.12.施工隊要鋪設1000米的管道,因在中考期間需停工2天,每天要比原計劃多施工30米才能按時完成任務.設原計劃每天施工x米,所列方程正確的是()A.=2 B.=2C.=2 D.=2二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當扇形AOB的半徑為2時,陰影部分的面積為__________.14.如圖所示一棱長為3cm的正方體,把所有的面均分成3×3個小正方形.其邊長都為1cm,假設一只螞蟻每秒爬行2cm,則它從下底面點A沿表面爬行至側面的B點,最少要用_____秒鐘.15.在直角三角形ABC中,∠C=90°,已知sinA=3516.拋物線的頂點坐標是________.17.如圖,△ABC與△DEF位似,點O為位似中心,若AC=3DF,則OE:EB=_____.18.一次函數與的圖象如圖,則的解集是__.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為了解某校學生的課余興趣愛好情況,某調查小組設計了“閱讀”、“打球”、“書法”和“舞蹈”四個選項,用隨機抽樣的方法調查了該校部分學生的課余興趣愛好情況(每個學生必須選一項且只能選一項),并根據調查結果繪制了如圖統計圖:根據統計圖所提供的倍息,解答下列問題:(1)本次抽樣調查中的學生人數是多少人;(2)補全條形統計圖;(3)若該校共有2000名學生,請根據統計結果估計該校課余興趣愛好為“打球”的學生人數;(4)現有愛好舞蹈的兩名男生兩名女生想參加舞蹈社,但只能選兩名學生,請你用列表或畫樹狀圖的方法,求出正好選到一男一女的概率.20.(6分)如圖,已知△ABC,請用尺規作圖,使得圓心到△ABC各邊距離相等(保留作圖痕跡,不寫作法).21.(6分)計算:(1)(2)22.(8分)某社區活動中心為鼓勵居民加強體育鍛煉,準備購買10副某種品牌的羽毛球拍,每副球拍配x(x≥2)個羽毛球,供社區居民免費借用.該社區附近A、B兩家超市都有這種品牌的羽毛球拍和羽毛球出售,且每副球拍的標價均為30元,每個羽毛球的標價為3元,目前兩家超市同時在做促銷活動:A超市:所有商品均打九折(按標價的90%)銷售;B超市:買一副羽毛球拍送2個羽毛球.設在A超市購買羽毛球拍和羽毛球的費用為yA(元),在B超市購買羽毛球拍和羽毛球的費用為yB(元).請解答下列問題:分別寫出yA、yB與x之間的關系式;若該活動中心只在一家超市購買,你認為在哪家超市購買更劃算?若每副球拍配15個羽毛球,請你幫助該活動中心設計出最省錢的購買方案.23.(8分)如圖,⊙O直徑AB和弦CD相交于點E,AE=2,EB=6,∠DEB=30°,求弦CD長.24.(10分)計算:2sin60°+|3﹣|+(π﹣2)0﹣()﹣125.(10分)解不等式組:并求它的整數解的和.26.(12分)如圖,在四邊形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求證:四邊形ABCD是菱形;過點D作DE⊥BD,交BC的延長線于點E,若BC=5,BD=8,求四邊形ABED的周長.27.(12分)某商場以每件280元的價格購進一批商品,當每件商品售價為360元時,每月可售出60件,為了擴大銷售,商場決定采取適當降價的方式促銷,經調查發現,如果每件商品降價1元,那么商場每月就可以多售出5件.降價前商場每月銷售該商品的利潤是多少元?要使商場每月銷售這種商品的利潤達到7200元,且更有利于減少庫存,則每件商品應降價多少元?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
由OA=OB得∠OAB=∠OBA=25°,根據三角形內角和定理計算出∠AOB=130°,則根據圓周角定理得∠P=
∠AOB,然后根據圓內接四邊形的性質求解.【詳解】解:在圓上取點
P
,連接
PA
、
PB.∵OA=OB
,∴∠OAB=∠OBA=25°
,∴∠AOB=180°?2×25°=130°
,∴∠P=∠AOB=65°,∴∠ACB=180°?∠P=115°.故選B.【點睛】本題考查的是圓,熟練掌握圓周角定理是解題的關鍵.2、A【解析】
由頻數分布表可知后兩組的頻數和為10,即可得知總人數,結合前兩組的頻數知出現次數最多的數據及第15、16個數據的平均數,可得答案.【詳解】由題中表格可知,年齡為15歲與年齡為16歲的頻數和為,則總人數為,故該組數據的眾數為14歲,中位數為(歲),所以對于不同的x,關于年齡的統計量不會發生改變的是眾數和中位數,故選A.【點睛】本題主要考查頻數分布表及統計量的選擇,由表中數據得出數據的總數是根本,熟練掌握平均數、中位數、眾數及方差的定義和計算方法是解題的關鍵.3、D【解析】
利用旋轉不變性即可解決問題.【詳解】∵△DAE是由△BAC旋轉得到,
∴∠BAC=∠DAE=α,∠B=∠D,
∵∠ACB=∠DCF,
∴∠CFD=∠BAC=α,
故A,B,C正確,
故選D.【點睛】本題考查旋轉的性質,解題的關鍵是熟練掌握旋轉不變性解決問題,屬于中考??碱}型.4、A【解析】
先利用勾股定理計算出AB,再在Rt△BDE中,求出BD即可;【詳解】解:∵∠C=90°,AC=4,BC=3,
∴AB=5,
∵△ABC繞點A逆時針旋轉,使點C落在線段AB上的點E處,點B落在點D處,
∴AE=AC=4,DE=BC=3,
∴BE=AB-AE=5-4=1,
在Rt△DBE中,BD=,故選A.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.5、C【解析】試題解析:A、根據圖①可得第24天的銷售量為200件,故正確;B、設當0≤t≤20,一件產品的銷售利潤z(單位:元)與時間t(單位:天)的函數關系為z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=-x+25,當x=10時,y=-10+25=15,故正確;C、當0≤t≤24時,設產品日銷售量y(單位:件)與時間t(單位;天)的函數關系為y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=t+100,當t=12時,y=150,z=-12+25=13,∴第12天的日銷售利潤為;150×13=1950(元),第30天的日銷售利潤為;150×5=750(元),750≠1950,故C錯誤;D、第30天的日銷售利潤為;150×5=750(元),故正確.故選C6、D【解析】
根據垂徑定理,圓周角的性質定理即可作出判斷.【詳解】∵P是弦AB的中點,CD是過點P的直徑.∴AB⊥CD,弧AD=弧BD,故①正確,③正確;∠AOB=2∠AOD=4∠ACD,故②正確.P是OD上的任意一點,因而④不一定正確.故正確的是:①②③.故選:D.【點睛】本題主要考查了垂徑定理,圓周角定理,正確理解定理是關鍵.平分弦(不是直徑)的直徑垂直與這條弦,并且平分這條弦所對的兩段弧;同圓或等圓中,圓周角等于它所對的弧上的圓心角的一半.7、C【解析】
易證△DEF∽△DAB,△BEF∽△BCD,根據相似三角形的性質可得=,=,從而可得+=+=1.然后把AB=1,CD=3代入即可求出EF的值.【詳解】∵AB、CD、EF都與BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴=,=,∴+=+==1.∵AB=1,CD=3,∴+=1,∴EF=.故選C.【點睛】本題考查了相似三角形的判定及性質定理,熟練掌握性質定理是解題的關鍵.8、A【解析】
根據相反數的定義進行求解.【詳解】1的相反數為:﹣1.故選A.【點睛】本題主要考查相反數的定義,熟練掌握相反數的定義是解答的關鍵,絕對值相等,符號相反的兩個數互為相反數.9、D【解析】試題分析:D選項中作的是AB的中垂線,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故選D.考點:作圖—復雜作圖.10、B【解析】試題解析:該幾何體是三棱柱.如圖:由勾股定理全面積為:故該幾何體的全面積等于1.故選B.11、A【解析】試題分析:根據軸對稱圖形的意義:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;據此可知,A為軸對稱圖形.故選A.考點:軸對稱圖形12、A【解析】分析:設原計劃每天施工x米,則實際每天施工(x+30)米,根據:原計劃所用時間﹣實際所用時間=2,列出方程即可.詳解:設原計劃每天施工x米,則實際每天施工(x+30)米,根據題意,可列方程:=2,故選A.點睛:本題考查了由實際問題抽象出分式方程,關鍵是讀懂題意,找出合適的等量關系,列出方程.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、π﹣1【解析】
根據勾股定理可求OC的長,根據題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算即可求解.【詳解】連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,∴∠COD=45°,∴OC=CD=1,∴CD=OD=1,∴陰影部分的面積=扇形BOC的面積﹣三角形ODC的面積=﹣×11=π﹣1.故答案為π﹣1.【點睛】本題考查正方形的性質和扇形面積的計算,解題關鍵是得到扇形半徑的長度.14、2.5秒.【解析】
把此正方體的點A所在的面展開,然后在平面內,利用勾股定理求點A和B點間的線段長,即可得到螞蟻爬行的最短距離.在直角三角形中,一條直角邊長等于5,另一條直角邊長等于2,利用勾股定理可求得.【詳解】解:因為爬行路徑不唯一,故分情況分別計算,進行大、小比較,再從各個路線中確定最短的路線.(1)展開前面右面由勾股定理得AB=cm;(2)展開底面右面由勾股定理得AB==5cm;所以最短路徑長為5cm,用時最少:5÷2=2.5秒.【點睛】本題考查了勾股定理的拓展應用.“化曲面為平面”是解決“怎樣爬行最近”這類問題的關鍵.15、35【解析】試題分析:解答此題要利用互余角的三角函數間的關系:sin(90°-α)=cosα,cos(90°-α)=sinα.試題解析:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴cosB=sinA=35考點:互余兩角三角函數的關系.16、(0,-1)【解析】∵a=2,b=0,c=-1,∴-=0,,∴拋物線的頂點坐標是(0,-1),故答案為(0,-1).17、1:2【解析】
△ABC與△DEF是位似三角形,則DF∥AC,EF∥BC,先證明△OAC∽△ODF,利用相似比求得AC=3DF,所以可求OE:OB=DF:AC=1:3,據此可得答案.【詳解】解:∵△ABC與△DEF是位似三角形,∴DF∥AC,EF∥BC∴△OAC∽△ODF,OE:OB=OF:OC∴OF:OC=DF:AC∵AC=3DF∴OE:OB=DF:AC=1:3,則OE:EB=1:2故答案為:1:2【點睛】本題考查了位似的相關知識,位似是相似的特殊形式,位似比等于相似比,位似圖形的對應頂點的連線平行或共線.18、【解析】
不等式kx+b-(x+a)>0的解集是一次函數y1=kx+b在y2=x+a的圖象上方的部分對應的x的取值范圍,據此即可解答.【詳解】解:不等式的解集是.故答案為:.【點睛】本題考查了一次函數的圖象與一元一次不等式的關系:從函數的角度看,就是尋求使一次函數y=kx+b的值大于(或小于)0的自變量x的取值范圍;從函數圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標所構成的集合.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)本次抽樣調查中的學生人數為100人;(2)補全條形統計圖見解析;(3)估計該校課余興趣愛好為“打球”的學生人數為800人;(4).【解析】
(1)用選“閱讀”的人數除以它所占的百分比即可得到調查的總人數;(2)先計算出選“舞蹈”的人數,再計算出選“打球”的人數,然后補全條形統計圖;(3)用2000乘以樣本中選“打球”的人數所占的百分比可估計該校課余興趣愛好為“打球”的學生人數;(4)畫樹狀圖展示所有12種等可能的結果數,再找出選到一男一女的結果數,然后根據概率公式求解.【詳解】(1)30÷30%=100,所以本次抽樣調查中的學生人數為100人;(2)選”舞蹈”的人數為100×10%=10(人),選“打球”的人數為100﹣30﹣10﹣20=40(人),補全條形統計圖為:(3)2000×=800,所以估計該校課余興趣愛好為“打球”的學生人數為800人;(4)畫樹狀圖為:共有12種等可能的結果數,其中選到一男一女的結果數為8,所以選到一男一女的概率=.【點睛】本題考查了條形統計圖與扇形統計圖,列表法與樹狀圖法求概率,讀懂統計圖,從中找到有用的信息是解題的關鍵.本題中還用到了知識點為:概率=所求情況數與總情況數之比.20、見解析【解析】
分別作∠ABC和∠ACB的平分線,它們的交點O滿足條件.【詳解】解:如圖,點O為所作.【點睛】本題考查了基本作圖:熟練掌握基本作圖(作一條線段等于已知線段;作一個角等于已知角;作已知線段的垂直平分線;作已知角的角平分線;過一點作已知直線的垂線).21、(1);(2)1.【解析】
(1)根據二次根式的混合運算法則即可;(2)根據特殊角的三角函數值即可計算.【詳解】解:(1)原式=;(2)原式.【點睛】本題考查了二次根式運算以及特殊角的三角函數值的運算,解題的關鍵是熟練掌握運算法則.22、解:(1)yA=27x+270,yB=30x+240;(2)當2≤x<10時,到B超市購買劃算,當x=10時,兩家超市一樣劃算,當x>10時在A超市購買劃算;(3)先選擇B超市購買10副羽毛球拍,然后在A超市購買130個羽毛球.【解析】
(1)根據購買費用=單價×數量建立關系就可以表示出yA、yB的解析式;(2)分三種情況進行討論,當yA=yB時,當yA>yB時,當yA<yB時,分別求出購買劃算的方案;(3)分兩種情況進行討論計算求出需要的費用,再進行比較就可以求出結論.【詳解】解:(1)由題意,得yA=(10×30+3×10x)×0.9=27x+270;yB=10×30+3(10x﹣20)=30x+240;(2)當yA=yB時,27x+270=30x+240,得x=10;當yA>yB時,27x+270>30x+240,得x<10;當yA<yB時,27x+270<30x+240,得x>10∴當2≤x<10時,到B超市購買劃算,當x=10時,兩家超市一樣劃算,當x>10時在A超市購買劃算.(3)由題意知x=15,15>10,∴選擇A超市,yA=27×15+270=675(元),先選擇B超市購買10副羽毛球拍,送20個羽毛球,然后在A超市購買剩下的羽毛球:(10×15﹣20)×3×0.9=351(元),共需要費用10×30+351=651(元).∵651元<675元,∴最佳方案是先選擇B超市購買10副羽毛球拍,然后在A超市購買130個羽毛球.【點睛】本題考查一次函數的應用,根據題意確列出函數關系式是本題的解題關鍵.23、2【解析】試題分析:過O作OF垂直于CD,連接OD,利用垂徑定理得到F為CD的中點,由AE+EB求出直徑AB的長,進而確定出半徑OA與OD的長,由OA﹣AE求出OE的長,在直角三角形OEF中,利用30°所對的直角邊等于斜邊的一半求出OF的長,在直角三角形ODF中,利用勾股定理求出DF的長,由CD=2DF即可求出CD的長.試題解析:過O作OF⊥CD,交CD于點F,連接OD,∴F為CD的中點,即CF=DF,∵AE=2,EB=6,∴AB=AE+EB=2+6=8,∴OA=4,∴OE=OA﹣AE=4﹣2=2,在Rt△OEF中,∠DEB=30°,∴OF=12在Rt△ODF中,OF=1,OD=4,根據勾股定理得:DF=OD2-O則CD=2DF=215.考點:垂徑定理;勾股定理.24、1【解析】
根據特殊角的三角函數值、零指數冪的運算法則、負整數指數冪的運算法則、絕對值的性質進行化簡,計算即可.【詳解】原式=1×+3﹣+1﹣1=1.【點睛】此題主要考查了實數的運算,要熟練掌握,解答此題的關鍵是要明確:在進行實數運算時,和有理數運算一樣,要從高級到低級,即先算乘方、開方,再算乘除,最后算加減,有括號的要先算括號里面的,同級運算要按照從左到右的順序進行.另外,有理數的運算律在實數范圍內仍然適用.25、0【解析】分析:先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分即可求出不等式組的解集.詳解:,由①去括號得:﹣3x﹣3﹣x+3<8,解得:x>﹣2,由②去分母得:4x+2﹣3+3x≤6,解得:x≤1,則不等式組的解集為﹣2<x≤1.點睛:本題考查了一元一次不等式組的解法,先分別解兩個不等式,求出它們的解集,再求兩個不等式解集的公共部分.不等式組
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業自動化技術的新進展與應用案例分析
- 工業領域環保技術的前沿與發展
- 工業設計與環境保護的關系
- 工作中的口頭與書面溝通技巧
- 工作場所靈活性與效率關系探討
- 工作場所的綠色環保理念與實踐
- 工作模式變革下的人才培養計劃
- 工程數學中的建模與計算方法
- 工程機械中焊接結構的耐久性優化
- 工程建筑中的綠色節能技術應用研究
- 2025年天津市河西區中考二模英語試題
- 2025年全國統一高考英語試卷(全國二卷)含答案
- 2025年上海市版個人房屋租賃合同
- 數據的生命周期管理流程試題及答案
- 2025江蘇蘇州工業園區蘇相合作區國企業招聘5人易考易錯模擬試題(共500題)試卷后附參考答案
- T/CECS 10359-2024生物安全實驗室生命支持系統
- T/CSBME 058-2022持續葡萄糖監測系統
- 吊車吊籃施工方案大全
- 2025年中考英語考前沖刺卷(北京卷)(解析版)
- 2025年物業安全管理專家考試試題及答案
- 2025年醫保知識考試題庫及答案(醫保政策宣傳與解讀)綜合測試
評論
0/150
提交評論