




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022屆天津市西青區中考試題猜想數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(共10小題,每小題3分,共30分)1.下列運算結果正確的是()A.3a2-a2=2 B.a2·a3=a6 C.(-a2)3=-a6 D.a2÷a2=a2.定義:一個自然數,右邊的數字總比左邊的數字小,我們稱之為“下滑數”(如:32,641,8531等).現從兩位數中任取一個,恰好是“下滑數”的概率為()A. B. C. D.3.在中,,,下列結論中,正確的是()A. B.C. D.4.一艘在南北航線上的測量船,于A點處測得海島B在點A的南偏東30°方向,繼續向南航行30海里到達C點時,測得海島B在C點的北偏東15°方向,那么海島B離此航線的最近距離是()(結果保留小數點后兩位)(參考數據:3≈1.732,2≈1.414)A.4.64海里B.5.49海里C.6.12海里D.6.21海里5.實數a,b,c在數軸上對應點的位置大致如圖所示,O為原點,則下列關系式正確的是()A.a﹣c<b﹣c B.|a﹣b|=a﹣b C.ac>bc D.﹣b<﹣c6.世界因愛而美好,在今年我校的“獻愛心”捐款活動中,九年級三班50名學生積極加獻愛心捐款活動,班長將捐款情況進行了統計,并繪制成了統計圖,根據圖中提供的信息,捐款金額的眾數和中位數分別是A.20、20 B.30、20 C.30、30 D.20、307.定義運算“※”為:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣1.則函數y=2※x的圖象大致是()A. B.C. D.8.如圖是由5個大小相同的正方體組成的幾何體,則該幾何體的左視圖是()A. B.C. D.9.如圖,矩形ABCD中,AB=4,BC=3,F是AB中點,以點A為圓心,AD為半徑作弧交AB于點E,以點B為圓心,BF為半徑作弧交BC于點G,則圖中陰影部分面積的差S1-S2為()A. B. C. D.610.點A(a,3)與點B(4,b)關于y軸對稱,則(a+b)2017的值為()A.0 B.﹣1 C.1 D.72017二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,在平面直角坐標系中,矩形OACB的頂點O是坐標原點,頂點A、B分別在x軸、y軸的正半軸上,OA=3,OB=4,D為邊OB的中點.若E為邊OA上的一個動點,當△CDE的周長最小時,則點E的坐標____________.12.為參加2018年“宜賓市初中畢業生升學體育考試”,小聰同學每天進行立定跳遠練習,并記錄下其中7天的最好成績(單位:m)分別為:2.21,2.12,2.1,2.39,2.1,2.40,2.1.這組數據的中位數和眾數分別是_____.13.已知線段AB=10cm,C為線段AB的黃金分割點(AC>BC),則BC=_____.14.若不等式組的解集為,則________.15.閱讀理解:引入新數i,新數i滿足分配律、結合律、交換律,已知i2=﹣1,那么(1+i)?(1﹣i)的平方根是_____.16.如圖,在4×4正方形網格中,黑色部分的圖形構成一個軸對稱圖形,現在任選取一個白色的小正方形并涂黑,使圖中黑色部分的圖形仍然構成一個軸對稱圖形的概率是_____.三、解答題(共8題,共72分)17.(8分)為落實“美麗撫順”的工作部署,市政府計劃對城區道路進行了改造,現安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?18.(8分)如圖,在⊿中,,于,.⑴.求的長;⑵.求的長.19.(8分)如圖,在平行四邊形ABCD中,E、F是對角線BD上的兩點,且BF=DE.求證:AE∥CF.20.(8分)如圖,在平面直角坐標系中,直線y=x+2與坐標軸交于A、B兩點,點A在x軸上,點B在y軸上,C點的坐標為(1,0),拋物線y=ax2+bx+c經過點A、B、C.(1)求該拋物線的解析式;(2)根據圖象直接寫出不等式ax2+(b﹣1)x+c>2的解集;(3)點P是拋物線上一動點,且在直線AB上方,過點P作AB的垂線段,垂足為Q點.當PQ=時,求P點坐標.21.(8分)商場某種商品平均每天可銷售30件,每件盈利50元.為了盡快減少庫存,商場決定采取適當的降價措施.經調查發現,每件商品每降價1元,商場平均每天可多售出2件.設每件商品降價x元.據此規律,請回答:(1)商場日銷售量增加▲件,每件商品盈利▲元(用含x的代數式表示);(2)在上述條件不變、銷售正常情況下,每件商品降價多少元時,商場日盈利可達到2100元?22.(10分)在等邊三角形ABC中,點P在△ABC內,點Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求證:△ABP≌△CAQ;請判斷△APQ是什么形狀的三角形?試說明你的結論.23.(12分)定義:若某拋物線上有兩點A、B關于原點對稱,則稱該拋物線為“完美拋物線”.已知二次函數y=ax2-2mx+c(a,m,c均為常數且ac≠0)是“完美拋物線”:(1)試判斷ac的符號;(2)若c=-1,該二次函數圖象與y軸交于點C,且S△ABC=1.①求a的值;②當該二次函數圖象與端點為M(-1,1)、N(3,4)的線段有且只有一個交點時,求m的取值范圍.24.已知:如圖,在△ABC中,AB=13,AC=8,cos∠BAC=,BD⊥AC,垂足為點D,E是BD的中點,聯結AE并延長,交邊BC于點F.(1)求∠EAD的余切值;(2)求的值.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】選項A,3a2-a2=2a2;選項B,a2·a3=a5;選項C,(-a2)3=-a6;選項D,a2÷a2=1.正確的只有選項C,故選C.2、A【解析】分析:根據概率的求法,找準兩點:①全部情況的總數:根據題意得知這樣的兩位數共有90個;
②符合條件的情況數目:從總數中找出符合條件的數共有45個;二者的比值就是其發生的概率.詳解:兩位數共有90個,下滑數有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45個,
概率為.
故選A.點睛:此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現m種結果,那么事件A的概率P(A)=.3、C【解析】
直接利用銳角三角函數關系分別計算得出答案.【詳解】∵,,∴,∴,故選項A,B錯誤,∵,∴,故選項C正確;選項D錯誤.故選C.【點睛】此題主要考查了銳角三角函數關系,熟練掌握銳角三角函數關系是解題關鍵.4、B【解析】
根據題意畫出圖如圖所示:作BD⊥AC,取BE=CE,根據三角形內角和和等腰三角形的性質得出BA=BE,AD=DE,設BD=x,Rt△ABD中,根據勾股定理得AD=DE=
3x,AB=BE=CE=2x,由AC=AD+DE+EC=2
3x+2x=30,解之即可得出答案.【詳解】根據題意畫出圖如圖所示:作BD⊥AC,取BE=CE,
∵AC=30,∠CAB=30°∠ACB=15°,
∴∠ABC=135°,
又∵BE=CE,
∴∠ACB=∠EBC=15°,
∴∠ABE=120°,
又∵∠CAB=30°
∴BA=BE,AD=DE,
設BD=x,
在Rt△ABD中,
∴AD=DE=
3x,AB=BE=CE=2x,
∴AC=AD+DE+EC=2
3x+2x=30,
∴x=153+1
=
15【點睛】本題考查了三角形內角和定理與等腰直角三角形的性質,解題的關鍵是熟練的掌握三角形內角和定理與等腰直角三角形的性質.5、A【解析】
根據數軸上點的位置確定出a,b,c的范圍,判斷即可.【詳解】由數軸上點的位置得:a<b<0<c,∴ac<bc,|a﹣b|=b﹣a,﹣b>﹣c,a﹣c<b﹣c.故選A.【點睛】考查了實數與數軸,弄清數軸上點表示的數是解本題的關鍵.6、C【解析】分析:由表提供的信息可知,一組數據的眾數是這組數中出現次數最多的數,而中位數則是將這組數據從小到大(或從大到小)依次排列時,處在最中間位置的數,據此可知這組數據的眾數,中位數.詳解:根據右圖提供的信息,捐款金額的眾數和中位數分別是30,30.故選C.點睛:考查眾數和中位數的概念,熟記概念是解題的關鍵.7、C【解析】
根據定義運算“※”為:a※b=,可得y=2※x的函數解析式,根據函數解析式,可得函數圖象.【詳解】解:y=2※x=,當x>0時,圖象是y=對稱軸右側的部分;當x<0時,圖象是y=對稱軸左側的部分,所以C選項是正確的.【點睛】本題考查了二次函數的圖象,利用定義運算“※”為:a※b=得出分段函數是解題關鍵.8、B【解析】
找到從左面看所得到的圖形即可,注意所有的看到的棱都應表現在主視圖中.【詳解】解:從左面看易得下面一層有2個正方形,上面一層左邊有1個正方形.故選:B.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.9、A【解析】
根據圖形可以求得BF的長,然后根據圖形即可求得S1-S2的值.【詳解】∵在矩形ABCD中,AB=4,BC=3,F是AB中點,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故選A.【點睛】本題考查扇形面積的計算、矩形的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.10、B【解析】
根據關于y軸對稱的點的縱坐標相等,橫坐標互為相反數,可得答案.【詳解】解:由題意,得a=-4,b=1.(a+b)2017=(-1)2017=-1,故選B.【點睛】本題考查了關于y軸對稱的點的坐標,利用關于y軸對稱的點的縱坐標相等,橫坐標互為相反數得出a,b是解題關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、(1,0)【解析】分析:由于C、D是定點,則CD是定值,如果的周長最小,即有最小值.為此,作點D關于x軸的對稱點D′,當點E在線段CD′上時的周長最小.詳解:如圖,作點D關于x軸的對稱點D′,連接CD′與x軸交于點E,連接DE.若在邊OA上任取點E′與點E不重合,連接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周長最小,∵在矩形OACB中,OA=3,OB=4,D為OB的中點,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴點E的坐標為(1,0).故答案為:(1,0).點睛:考查軸對稱-最短路線問題,坐標與圖形性質,相似三角形的判定與性質等,找出點E的位置是解題的關鍵.12、2.40,2.1.【解析】∵把7天的成績從小到大排列為:2.12,2.21,2.39,2.40,2.1,2.1,2.1.∴它們的中位數為2.40,眾數為2.1.故答案為2.40,2.1.點睛:本題考查了中位數和眾數的求法,如果一組數據有奇數個,那么把這組數據從小到大排列后,排在中間位置的數是這組數據的中位數;如果一組數據有偶數個,那么把這組數據從小到大排列后,排在中間位置的兩個數的平均數是這組數據的中位數.一組數據中出現次數最多的數是這組數據的眾數.13、(15-55).【解析】試題解析:∵C為線段AB的黃金分割點(AC>BC),∴AC=5-12AB=AC=5-1∴BC=AB-AC=10-(55-5)=(15-55)cm.考點:黃金分割.14、-1【解析】分析:解出不等式組的解集,與已知解集-1<x<1比較,可以求出a、b的值,然后相加求出2009次方,可得最終答案.詳解:由不等式得x>a+2,x<b,∵-1<x<1,∴a+2=-1,b=1∴a=-3,b=2,∴(a+b)2009=(-1)2009=-1.故答案為-1.點睛:本題是已知不等式組的解集,求不等式中另一未知數的問題.可以先將另一未知數當作已知處理,求出解集與已知解集比較,進而求得零一個未知數.15、2【解析】
根據平方根的定義進行計算即可.【詳解】.解:∵i2=﹣1,∴(1+i)?(1﹣i)=1﹣i2=2,∴(1+i)?(1﹣i)的平方根是±,故答案為±.【點睛】本題考查平方根以及實數的運算,解題關鍵掌握平方根的定義.16、【解析】如圖,有5種不同取法;故概率為.三、解答題(共8題,共72分)17、(1)乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米.(2)10天.【解析】
(1)設乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據工作時間=工作總量÷工作效率結合甲隊改造360米的道路比乙隊改造同樣長的道路少用3天,即可得出關于x的分式方程,解之經檢驗后即可得出結論;(2)設安排甲隊工作m天,則安排乙隊工作天,根據總費用=甲隊每天所需費用×工作時間+乙隊每天所需費用×工作時間結合總費用不超過145萬元,即可得出關于m的一元一次不等式,解之取其中的最大值即可得出結論.【詳解】(1)設乙工程隊每天能改造道路的長度為x米,則甲工程隊每天能改造道路的長度為x米,根據題意得:,解得:x=40,經檢驗,x=40是原分式方程的解,且符合題意,∴x=×40=60,答:乙工程隊每天能改造道路的長度為40米,甲工程隊每天能改造道路的長度為60米;(2)設安排甲隊工作m天,則安排乙隊工作天,根據題意得:7m+5×≤145,解得:m≥10,答:至少安排甲隊工作10天.【點睛】本題考查了分式方程的應用以及一元一次不等式的應用,解題的關鍵是:(1)找準等量關系,正確列出分式方程;(2)根據各數量間的關系,正確列出一元一次不等式.18、(1)25(2)12【解析】整體分析:(1)用勾股定理求斜邊AB的長;(2)用三角形的面積等于底乘以高的一半求解.解:(1).∵在⊿中,,.∴,(2).∵⊿,∴即,∴20×15=25CD.∴.19、證明見解析【解析】試題分析:通過全等三角形△ADE≌△CBF的對應角相等證得∠AED=∠CFB,則由平行線的判定證得結論.證明:∵平行四邊形ABCD中,AD=BC,AD∥BC,∴∠ADE=∠CBF.∵在△ADE與△CBF中,AD=BC,∠ADE=∠CBF,DE=BF,∴△ADE≌△CBF(SAS).∴∠AED=∠CFB.∴AE∥CF.20、(1)y=﹣x2﹣x+2;(2)﹣2<x<0;(3)P點坐標為(﹣1,2).【解析】分析:(1)、根據題意得出點A和點B的坐標,然后利用待定系數法求出二次函數的解析式;(2)、根據函數圖像得出不等式的解集;(3)、作PE⊥x軸于點E,交AB于點D,根據題意得出∠PDQ=∠ADE=45°,PD==1,然后設點P(x,﹣x2﹣x+2),則點D(x,x+2),根據PD的長度得出x的值,從而得出點P的坐標.詳解:(1)當y=0時,x+2=0,解得x=﹣2,當x=0時,y=0+2=2,則點A(﹣2,0),B(0,2),把A(﹣2,0),C(1,0),B(0,2),分別代入y=ax2+bx+c得,解得.∴該拋物線的解析式為y=﹣x2﹣x+2;(2)ax2+(b﹣1)x+c>2,ax2+bx+c>x+2,則不等式ax2+(b﹣1)x+c>2的解集為﹣2<x<0;(3)如圖,作PE⊥x軸于點E,交AB于點D,在Rt△OAB中,∵OA=OB=2,∴∠OAB=45°,∴∠PDQ=∠ADE=45°,在Rt△PDQ中,∠DPQ=∠PDQ=45°,PQ=DQ=,∴PD==1,設點P(x,﹣x2﹣x+2),則點D(x,x+2),∴PD=﹣x2﹣x+2﹣(x+2)=﹣x2﹣2x,即﹣x2﹣2x=1,解得x=﹣1,則﹣x2﹣x+2=2,∴P點坐標為(﹣1,2).點睛:本題主要考查的是二次函數的性質以及直角三角形的性質,屬于基礎題型.利用待定系數法求出函數解析式是解決這個問題的關鍵.21、(1)2x50-x(2)每件商品降價20元,商場日盈利可達2100元.【解析】
(1)2x50-x.(2)解:由題意,得(30+2x)(50-x)=2100解之得x1=15,x2=20.∵該商場為盡快減少庫存,降價越多越吸引顧客.∴x=20.答:每件商品降價20元,商場日盈利可達2100元.22、(1)證明見解析;(2)△APQ是等邊三角形.【解析】
(1)根據等邊三角形的性質可得AB=AC,再根據SAS證明△ABP≌△ACQ;(2)根據全等三角形的性質得到AP=AQ,再證∠PAQ=60°,從而得出△APQ是等邊三角形.【詳解】證明:(1)∵△ABC為等邊三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等邊三角形.【點睛】本題考查了全等三角形的判定,考查了全等三角形對應邊相等的性質,考查了正三角形的判定,本題中求證,△ABP≌△ACQ是解題的關鍵.23、(1)ac<3;(3)①a=1;②m>或m<.【解析】
(1)設A
(p,q).則B
(-p,-q),把A、B坐標代入解析式可得方程組即可得到結論;
(3)由c=-1,得到p3=,a>3,且C(3,-1),求得p=±,①根據三角形的面積公式列方程即可得到結果;②由①可知:拋物線解析式為y=x3-3mx-1,根據M(-1,1)、N(3,4).得到這些MN的解析式y=x+(-1≤x≤3),聯立方程組得到x3-3mx-1=x+,故問題轉化為:方程x3-(3m+)x-=3在-1≤x≤3內只有一個解,建立新的二次函數:y=x3-(3m+)x-,根據題意得到(Ⅰ)若-1≤x1<3且x3>3,(Ⅱ)若x1<-1且-1<x3≤3:列方程組即可得到結論.【詳解】(1)設A
(p,q).則B
(-p,-q),
把A、B坐標代入解析式可得:,
∴3ap3+3c=3.即p3=?,
∴?≥3,
∵ac≠3,
∴?>3,
∴ac<3;
(3)∵c=-1,
∴p3=,a>3,且C(3,-1),
∴p=±,
①S△ABC=×3×1=1,
∴a=1;
②由①可知:拋物線解析式為y=x3-3mx-1,
∵M(-1,1)、N(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工業自動化技術的新進展與應用案例分析
- 工業領域環保技術的前沿與發展
- 工業設計與環境保護的關系
- 工作中的口頭與書面溝通技巧
- 工作場所靈活性與效率關系探討
- 工作場所的綠色環保理念與實踐
- 工作模式變革下的人才培養計劃
- 工程數學中的建模與計算方法
- 工程機械中焊接結構的耐久性優化
- 工程建筑中的綠色節能技術應用研究
- 軟件正版化工作培訓
- 《限額以下小型工程施工安全管理辦法(試行)》知識培訓
- 廣西申論真題2021年(B卷)
- 國家職業技術技能標準 4-04-05-05 人工智能訓練師 人社廳發202181號
- GB/T 44442-2024智能制造遠程運維系統評價指標體系
- 國開建筑工程技術實踐
- 延長石油招聘筆試題庫
- 廣東省深圳市龍崗區多校聯考2024年統編版小升初考試語文試卷(解析版)
- 2023年北京第二次高中學業水平合格考化學試卷真題(含答案詳解)
- 02R111小型立、臥式油罐圖集
- 2024屆廣州市南沙區數學五年級第二學期期末監測模擬試題含解析
評論
0/150
提交評論