




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
孝感市重點中學2024年中考五模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.某商品的進價為每件元.當售價為每件元時,每星期可賣出件,現需降價處理,為占有市場份額,且經市場調查:每降價元,每星期可多賣出件.現在要使利潤為元,每件商品應降價()元.A.3 B.2.5 C.2 D.52.點M(1,2)關于y軸對稱點的坐標為()A.(﹣1,2) B.(﹣1,﹣2) C.(1,﹣2) D.(2,﹣1)3.在平面直角坐標系中,函數的圖象經過()A.第一、二、三象限 B.第一、二、四象限C.第一、三、四象限 D.第二、三、四象限4.如圖,已知反比函數的圖象過Rt△ABO斜邊OB的中點D,與直角邊AB相交于C,連結AD、OC,若△ABO的周長為,AD=2,則△ACO的面積為()A. B.1 C.2 D.45.在0,-2,5,,-0.3中,負數的個數是().A.1 B.2 C.3 D.46.下列說法不正確的是()A.某種彩票中獎的概率是,買1000張該種彩票一定會中獎B.了解一批電視機的使用壽命適合用抽樣調查C.若甲組數據的標準差S甲=0.31,乙組數據的標準差S乙=0.25,則乙組數據比甲組數據穩定D.在一個裝有白球和綠球的袋中摸球,摸出黑球是不可能事件7.如圖,菱形ABCD中,∠B=60°,AB=4,以AD為直徑的⊙O交CD于點E,則的長為()A. B. C. D.8.如圖,在平面直角坐標系中,已知點A(―3,6)、B(―9,一3),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應點A′的坐標是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)9.的倒數是()A. B.3 C. D.10.某班將舉行“慶祝建黨95周年知識競賽”活動,班長安排小明購買獎品,如圖是小明買回獎品時與班長的對話情境:請根據如圖對話信息,計算乙種筆記本買了()A.25本 B.20本 C.15本 D.10本二、填空題(本大題共6個小題,每小題3分,共18分)11.分解因式:3x2-6x+3=__.12.為選拔一名選手參加全國中學生游泳錦標賽自由泳比賽,我市四名中學生參加了男子100米自由泳訓練,他們成績的平均數及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29s21.11.11.31.6如果選拔一名學生去參賽,應派_________去.13.若關于x的方程x2-x+sinα=0有兩個相等的實數根,則銳角α的度數為___.14.如圖,a∥b,∠1=110°,∠3=40°,則∠2=_____°.15.已知⊙O1、⊙O2的半徑分別為2和5,圓心距為d,若⊙O1與⊙O2相交,那么d的取值范圍是_________.16.如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點,若AB=6,AD=8,則四邊形ABOM的周長為_____.三、解答題(共8題,共72分)17.(8分)小麗和哥哥小明分別從家和圖書館同時出發,沿同一條路相向而行,小麗開始跑步,遇到哥哥后改為步行,到達圖書館恰好用35分鐘,小明勻速騎自行車直接回家,騎行10分鐘后遇到了妹妺,再繼續騎行5分鐘,到家兩人距離家的路程y(m)與各自離開出發的時間x(min)之間的函數圖象如圖所示:(1)求兩人相遇時小明離家的距離;(2)求小麗離距離圖書館500m時所用的時間.18.(8分)一個不透明的口袋里裝有分別標有漢字“美”、“麗”、“光”、“明”的四個小球,除漢字不同之外,小球沒有任何區別,每次摸球前先攪拌均勻再摸球.(1)若從中任取一個球,求摸出球上的漢字剛好是“美”的概率;(2)甲從中任取一球,不放回,再從中任取一球,請用樹狀圖或列表法,求甲取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.19.(8分)(1)解方程:x2﹣4x﹣3=0;(2)解不等式組:x-3(x-2)≤420.(8分)灞橋區教育局為了了解七年級學生參加社會實踐活動情況,隨機抽取了鐵一中濱河學部分七年級學生2016﹣2017學年第一學期參加實踐活動的天數,并用得到的數據繪制了兩幅統計圖,下面給出了兩幅不完整的統計圖.請根據圖中提供的信息,回答下列問題:(1)a=%,并補全條形圖.(2)在本次抽樣調查中,眾數和中位數分別是多少?(3)如果該區共有七年級學生約9000人,請你估計活動時間不少于6天的學生人數大約有多少?21.(8分)如圖,已知點A,C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求證:四邊形ABCD是平行四邊形;(2)直接寫出圖中所有相等的線段(AE=CF除外).22.(10分)(問題發現)(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關系為;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,FE,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉中心將正方形ABCD旋轉60°,得到正方形AB'C'D',請直接寫出BD'平方的值.23.(12分)如圖,在平面直角坐標系中,直線經過點和,雙曲線經過點B.(1)求直線和雙曲線的函數表達式;(2)點C從點A出發,沿過點A與y軸平行的直線向下運動,速度為每秒1個單位長度,點C的運動時間為t(0<t<12),連接BC,作BD⊥BC交x軸于點D,連接CD,①當點C在雙曲線上時,求t的值;②在0<t<6范圍內,∠BCD的大小如果發生變化,求tan∠BCD的變化范圍;如果不發生變化,求tan∠BCD的值;③當時,請直接寫出t的值.24.如圖,一次函數y=kx+b的圖象與坐標軸分別交于A、B兩點,與反比例函數y=的圖象在第一象限的交點為C,CD⊥x軸于D,若OB=1,OD=6,△AOB的面積為1.求一次函數與反比例函數的表達式;當x>0時,比較kx+b與的大小.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、A【解析】
設售價為x元時,每星期盈利為6125元,那么每件利潤為(x-40),原來售價為每件60元時,每星期可賣出300件,所以現在可以賣出[300+20(60-x)]件,然后根據盈利為6120元即可列出方程解決問題.【詳解】解:設售價為x元時,每星期盈利為6120元,
由題意得(x-40)[300+20(60-x)]=6120,
解得:x1=57,x2=1,
由已知,要多占市場份額,故銷售量要盡量大,即售價要低,故舍去x2=1.
∴每件商品應降價60-57=3元.
故選:A.【點睛】本題考查了一元二次方程的應用.此題找到關鍵描述語,找到等量關系準確的列出方程是解決問題的關鍵.此題要注意判斷所求的解是否符合題意,舍去不合題意的解.2、A【解析】
關于y軸對稱的點的坐標特征是縱坐標不變,橫坐標變為相反數.【詳解】點M(1,2)關于y軸對稱點的坐標為(-1,2)【點睛】本題考查關于坐標軸對稱的點的坐標特征,牢記關于坐標軸對稱的點的性質是解題的關鍵.3、A【解析】【分析】一次函數y=kx+b的圖象經過第幾象限,取決于k和b.當k>0,b>O時,圖象過一、二、三象限,據此作答即可.【詳解】∵一次函數y=3x+1的k=3>0,b=1>0,∴圖象過第一、二、三象限,故選A.【點睛】一次函數y=kx+b的圖象經過第幾象限,取決于x的系數和常數項.4、A【解析】
在直角三角形AOB中,由斜邊上的中線等于斜邊的一半,求出OB的長,根據周長求出直角邊之和,設其中一直角邊AB=x,表示出OA,利用勾股定理求出AB與OA的長,過D作DE垂直于x軸,得到E為OA中點,求出OE的長,在直角三角形DOE中,利用勾股定理求出DE的長,利用反比例函數k的幾何意義求出k的值,確定出三角形AOC面積即可.【詳解】在Rt△AOB中,AD=2,AD為斜邊OB的中線,∴OB=2AD=4,由周長為4+2,得到AB+AO=2,設AB=x,則AO=2-x,根據勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,整理得:x2-2x+4=0,解得x1=+,x2=-,∴AB=+,OA=-,過D作DE⊥x軸,交x軸于點E,可得E為AO中點,∴OE=OA=(-)(假設OA=+,與OA=-,求出結果相同),在Rt△DEO中,利用勾股定理得:DE==(+)),∴k=-DE?OE=-(+))×(-))=1.∴S△AOC=DE?OE=,故選A.【點睛】本題屬于反比例函數綜合題,涉及的知識有:勾股定理,直角三角形斜邊的中線性質,三角形面積求法,以及反比例函數k的幾何意義,熟練掌握反比例的圖象與性質是解本題關鍵.5、B【解析】
根據負數的定義判斷即可【詳解】解:根據負數的定義可知,這一組數中,負數有兩個,即-2和-0.1.故選B.6、A【解析】試題分析:根據抽樣調查適用的條件、方差的定義及意義和可能性的大小找到正確答案即可.試題解析:A、某種彩票中獎的概率是,只是一種可能性,買1000張該種彩票不一定會中獎,故錯誤;B、調查電視機的使用壽命要毀壞電視機,有破壞性,適合用抽樣調查,故正確;C、標準差反映了一組數據的波動情況,標準差越小,數據越穩定,故正確;D、袋中沒有黑球,摸出黑球是不可能事件,故正確.故選A.考點:1.概率公式;2.全面調查與抽樣調查;3.標準差;4.隨機事件.7、B【解析】
連接OE,由菱形的性質得出∠D=∠B=60°,AD=AB=4,得出OA=OD=2,由等腰三角形的性質和三角形內角和定理求出∠DOE=60°,再由弧長公式即可得出答案.【詳解】解:連接OE,如圖所示:∵四邊形ABCD是菱形,∴∠D=∠B=60°,AD=AB=4,∴OA=OD=2,∵OD=OE,∴∠OED=∠D=60°,∴∠DOE=180°﹣2×60°=60°,∴的長==;故選B.【點睛】本題考查弧長公式、菱形的性質、等腰三角形的性質等知識;熟練掌握菱形的性質,求出∠DOE的度數是解決問題的關鍵.8、D【解析】
試題分析:方法一:∵△ABO和△A′B′O關于原點位似,∴△ABO∽△A′B′O且=.∴==.∴A′E=AD=2,OE=OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵點A(―3,6)且相似比為,∴點A的對應點A′的坐標是(―3×,6×),∴A′(-1,2).∵點A′′和點A′(-1,2)關于原點O對稱,∴A′′(1,―2).故答案選D.考點:位似變換.9、A【解析】
解:的倒數是.故選A.【點睛】本題考查倒數,掌握概念正確計算是解題關鍵.10、C【解析】
設甲種筆記本買了x本,甲種筆記本的單價是y元,則乙種筆記本買了(40﹣x)本,乙種筆記本的單價是(y+3)元,根據題意列出關于x、y的二元一次方程組,求出x、y的值即可.【詳解】解:設甲種筆記本買了x本,甲種筆記本的單價是y元,則乙種筆記本買了(40﹣x)本,乙種筆記本的單價是(y+3)元,根據題意,得:,解得:,答:甲種筆記本買了25本,乙種筆記本買了15本.故選C.【點睛】本題考查的是二元二次方程組的應用,能根據題意得出關于x、y的二元二次方程組是解答此題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、3(x-1)2【解析】
先提取公因式3,再對余下的多項式利用完全平方公式繼續分解.【詳解】.故答案是:3(x-1)2.【點睛】考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.12、乙【解析】
∵丁〉甲乙=丙,∴從乙和丙中選擇一人參加比賽,
∵S
乙2<S
丙2,
∴選擇乙參賽,
故答案是:乙.13、30°【解析】試題解析:∵關于x的方程有兩個相等的實數根,∴解得:∴銳角α的度數為30°;故答案為30°.14、1【解析】試題解析:如圖,∵a∥b,∠3=40°,∴∠4=∠3=40°.∵∠1=∠2+∠4=110°,∴∠2=110°-∠4=110°-40°=1°.故答案為:1.15、3<d<7【解析】
若兩圓的半徑分別為R和r,且R≥r,圓心距為d:相交,則R-r<d<R+r,從而得到圓心距O1O2的取值范圍.【詳解】∵⊙O1和⊙O2的半徑分別為2和5,且兩圓的位置關系為相交,∴圓心距O1O2的取值范圍為5-2<d<2+5,即3<d<7.故答案為:3<d<7.【點睛】本題考查的知識點是圓與圓的位置關系,解題的關鍵是熟練的掌握圓與圓的位置關系.16、1.【解析】
根據矩形的性質,直角三角形斜邊中線性質,三角形中位線性質求出BO、OM、AM即可解決問題.【詳解】解:∵四邊形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴∵AO=OC,∴∵AO=OC,AM=MD=4,∴∴四邊形ABOM的周長為AB+OB+OM+AM=6+5+3+4=1.故答案為:1.【點睛】本題看成矩形的性質、三角形中位線定理、直角三角形斜邊中線性質等知識,解題的關鍵是靈活應用中線知識解決問題,屬于中考常考題型.三、解答題(共8題,共72分)17、(1)兩人相遇時小明離家的距離為1500米;(2)小麗離距離圖書館500m時所用的時間為分.【解析】
(1)根據題意得出小明的速度,進而得出得出小明離家的距離;(2)由(1)的結論得出小麗步行的速度,再列方程解答即可.【詳解】解:(1)根據題意可得小明的速度為:4500÷(10+5)=300(米/分),300×5=1500(米),∴兩人相遇時小明離家的距離為1500米;(2)小麗步行的速度為:(4500﹣1500)÷(35﹣10)=120(米/分),設小麗離距離圖書館500m時所用的時間為x分,根據題意得,1500+120(x﹣10)=4500﹣500,解得x=.答:小麗離距離圖書館500m時所用的時間為分.【點睛】本題由函數圖像獲取信息,以及一元一次方程的應用,由函數圖像正確獲取信息是解答本題的關鍵.18、(1);(2).【解析】
(1)一共4個小球,則任取一個球,共有4種不同結果,摸出球上的漢字剛好是“美”的概率為;(2)列表或畫出樹狀圖,根據一共出現的等可能的情況及恰能組成“美麗”或“光明”的情況進行解答即可.【詳解】(1)∵“美”、“麗”、“光”、“明”的四個小球,任取一球,共有4種不同結果,∴任取一個球,摸出球上的漢字剛好是“美”的概率P=(2)列表如下:美麗光明美----(美,麗)(光,美)(美,明)麗(美,麗)----(光,麗)(明,麗)光(美,光)(光,麗)----(光,明)明(美,明)(明,麗)(光,明)-------根據表格可得:共有12中等可能的結果,其中恰能組成“美麗”或“光明”共有4種,故取出的兩個球上的漢字恰能組成“美麗”或“光明”的概率.【點睛】此題考查的是用列表法或樹狀圖法求概率與不等式的性質.注意樹狀圖法與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;注意概率=所求情況數與總情況數之比.19、(1)x1=2+7【解析】試題分析:利用配方法進行解方程;首先分別求出兩個不等式的解,然后得出不等式組的解.試題解析:(1)x2-1x=3x2-1x+1=7(x-2)解得:x1=2+(2)解不等式1,得x≥1解不等式2,得x<1∴不等式組的解集是1≤x<1考點:一元二次方程的解法;不等式組.20、(1)10,補圖見解析;(2)眾數是5,中位數是1;(3)活動時間不少于1天的學生人數大約有5400人.【解析】
(1)用1減去其他天數所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出該扇形所對圓心角的度數;根據1天的人數和所占的百分比求出總人數,再乘以8天的人數所占的百分比,即可補全統計圖;(2)根據眾數和中位數的定義即可求出答案;(3)用總人數乘以活動時間不少于1天的人數所占的百分比即可求出答案.【詳解】解:(1)扇形統計圖中a=1﹣5%﹣40%﹣20%﹣25%=10%,該扇形所對圓心角的度數為310°×10%=31°,參加社會實踐活動的天數為8天的人數是:×10%=10(人),補圖如下:故答案為10;(2)抽樣調查中總人數為100人,結合條形統計圖可得:眾數是5,中位數是1.(3)根據題意得:9000×(25%+10%+5%+20%)=5400(人),活動時間不少于1天的學生人數大約有5400人.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.21、(1)見解析;(2)AD=BC,EC=AF,ED=BF,AB=DC.【解析】整體分析:(1)用ASA證明△ADE≌△CBF,得到AD=BC,根據一組對邊平行且相等的四邊形是平行四邊形證明;(2)根據△ADE≌△CBF,和平行四邊形ABCD的性質及線段的和差關系找相等的線段.解:(1)證明:∵AD∥BC,DE∥BF,∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF.在△ADE和△CBF中,,∴△ADE≌△CBF,∴AD=BC,∴四邊形ABCD是平行四邊形.(2)AD=BC,EC=AF,ED=BF,AB=DC.理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF.∵AE=CF,∴EC=AF.∵四邊形ABCD是平行四邊形,∴AB=DC.22、(1)AC垂直平分BD;(2)四邊形FMAN是矩形,理由見解析;(3)16+8或16﹣8【解析】
(1)依據點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,即可得出AC垂直平分BD;(2)根據Rt△ABC中,點F為斜邊BC的中點,可得AF=CF=BF,再根據等腰三角形ABD和等腰三角形ACE,即可得到AD=DB,AE=CE,進而得出∠AMF=∠MAN=∠ANF=90°,即可判定四邊形AMFN是矩形;(3)分兩種情況:①以點A為旋轉中心將正方形ABCD逆時針旋轉60°,②以點A為旋轉中心將正方形ABCD順時針旋轉60°,分別依據旋轉的性質以及勾股定理,即可得到結論.【詳解】(1)∵AB=AD,CB=CD,∴點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點F為斜邊BC的中點,∴AF=CF=BF,又∵等腰三角形ABD和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90°,∴∠AMF=∠MAN=∠ANF=90°,∴四邊形AMFN是矩形;(3)BD′的平方為16+8或16﹣8.分兩種情況:①以點A為旋轉中心將正方形ABCD逆時針旋轉60°,如圖所示:過D'作D'E⊥AB,交BA的延長線于E,由旋轉可得,∠DAD'=60°,∴∠EAD'=30°,∵AB=2=AD',∴D'E=AD'=,AE=,∴BE=2+,∴Rt△BD'E中,BD'2=D'E2+BE2=()2+(2+)2=16+8②以點A為旋轉中心將正方形ABCD順時針旋轉60°,如圖所示:過B作BF⊥AD'于F,旋轉可得,∠DAD'=60°,∴∠BAD'=30°,∵AB=2=AD',∴BF=AB=,AF=,∴D'F=2﹣,∴Rt△BD'F中,BD'2=BF2+D'F2=()2+(2-)2=16﹣8綜上所述,BD′平方的長度為16+8或16﹣8.【點睛】本題屬于四邊形綜合題,主要考查了正方形的性質,矩形的判定,旋轉的性質,線段垂直平分線的性質以及勾股定理的綜合運用,解決問題的關鍵是作輔助線構造直角三角形,依據勾股定理進行計算求解.解題時注意:有三個角是直角的四邊形是矩形.23、(1)直線的表達式為,雙曲線的表達式為;(2)①;②當時,的大小不發生變化,的值為;③t的值為或.【解析】
(1)由點利用待定系數法可求出直線的表達式;再由直線的表達式求出點B的坐標,然后利用待定系數法即可求出雙曲線的表達式;(2)①先求出點C的橫坐標,再將其代入雙曲線的表達式求出點C的縱坐標,從而即可得出t的值;②如圖1(見解析),設直線AB交y軸于M,則,取CD的中點K,連接AK、BK.利用直角三角形的性質證明A、D、B、C四點共圓,再根
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 能源審計在制漿造紙行業節能改造中的應用考核試卷
- 租賃市場消費者行為研究考核試卷
- 清潔生產技術在化妝品企業品牌戰略中的應用考核試卷
- 光纖網絡運維管理體系建設考核試卷
- 部編道德與法治七年級上冊第一單元成長的節拍測試卷
- 2025年中國GRC素線數據監測報告
- 2025年中國COD排放總量在線監測儀數據監測研究報告
- 2025年中國30對旋卡式電纜分線盒數據監測研究報告
- 2025至2030年中國鑄鋼鐵合頁市場分析及競爭策略研究報告
- 2025至2030年中國重力式貨架鋼木托盤市場分析及競爭策略研究報告
- 自動駕駛卡車的應用與發展詳述
- 備考2024四川省安全員之C2證(土建安全員)通關提分題庫(考點梳理)
- 高標準農田建設項目工程建設進度計劃與措施
- 綜述論文(腸內營養的臨床應用及護理進展)
- 2023年廈門大學強基計劃招生考試數學試題真題(含答案)
- 2023年職業技能-配網不停電帶電作業考試參考題庫(高頻真題版)附答案
- O型密封圈的選型設計計算參考
- 大學生勞動教育完整PPT全套教學課件
- 食品供貨方案(完整版)
- 成果s7-200smart系統手冊
- 湖北省中小學教師高級職稱專業水平能力測試模擬題(含(附答案))
評論
0/150
提交評論