山東省青島市黃島區致遠中學2023-2024學年高三考前熱身數學試卷含解析_第1頁
山東省青島市黃島區致遠中學2023-2024學年高三考前熱身數學試卷含解析_第2頁
山東省青島市黃島區致遠中學2023-2024學年高三考前熱身數學試卷含解析_第3頁
山東省青島市黃島區致遠中學2023-2024學年高三考前熱身數學試卷含解析_第4頁
山東省青島市黃島區致遠中學2023-2024學年高三考前熱身數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省青島市黃島區致遠中學2023-2024學年高三考前熱身數學試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.《九章算術》“少廣”算法中有這樣一個數的序列:列出“全步”(整數部分)及諸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去約其分子,將所得能通分之分數進行通分約簡,又用最下面的分母去遍乘諸(未通者)分子和以通之數,逐個照此同樣方法,直至全部為整數,例如:及時,如圖:記為每個序列中最后一列數之和,則為()A.147 B.294 C.882 D.17642.已知等比數列的前項和為,若,且公比為2,則與的關系正確的是()A. B.C. D.3.天干地支,簡稱為干支,源自中國遠古時代對天象的觀測.“甲、乙、丙、丁、戊、己、庚、辛、壬、癸”稱為十天干,“子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥”稱為十二地支.干支紀年法是天干和地支依次按固定的順序相互配合組成,以此往復,60年為一個輪回.現從農歷2000年至2019年共20個年份中任取2個年份,則這2個年份的天干或地支相同的概率為()A. B. C. D.4.已知等差數列的前13項和為52,則()A.256 B.-256 C.32 D.-325.拋物線的焦點為,點是上一點,,則()A. B. C. D.6.如圖,平面ABCD,ABCD為正方形,且,E,F分別是線段PA,CD的中點,則異面直線EF與BD所成角的余弦值為()A. B. C. D.7.已知,則的值等于()A. B. C. D.8.已知拋物線的焦點為,為拋物線上一點,,當周長最小時,所在直線的斜率為()A. B. C. D.9.已知函數是偶函數,當時,函數單調遞減,設,,,則的大小關系為()A. B. C. D.10.已知實數滿足則的最大值為()A.2 B. C.1 D.011.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.12.已知拋物線的焦點為,若拋物線上的點關于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點處的切線方程為______.14.若滿足,則目標函數的最大值為______.15.若的展開式中各項系數之和為32,則展開式中x的系數為_____16.已知函數,若關于的方程在定義域上有四個不同的解,則實數的取值范圍是_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,曲線的參數方程為(為參數),為上的動點,點滿足,點的軌跡為曲線.(Ⅰ)求的方程;(Ⅱ)在以為極點,軸的正半軸為極軸的極坐標系中,射線與的異于極點的交點為,與的異于極點的交點為,求.18.(12分)某工廠的機器上有一種易損元件A,這種元件在使用過程中發生損壞時,需要送維修處維修.工廠規定當日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當日必須完成所有損壞元件A的維修工作.每個工人獨立維修A元件需要時間相同.維修處記錄了某月從1日到20日每天維修元件A的個數,具體數據如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個數91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個數12241515151215151524從這20天中隨機選取一天,隨機變量X表示在維修處該天元件A的維修個數.(Ⅰ)求X的分布列與數學期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數的數學期望不超過4個,至少需要增加幾名維修工人?(只需寫出結論)19.(12分)百年大計,教育為本.某校積極響應教育部號召,不斷加大拔尖人才的培養力度,為清華、北大等排名前十的名校輸送更多的人才.該校成立特長班進行專項培訓.據統計有如下表格.(其中表示通過自主招生獲得降分資格的學生人數,表示被清華、北大等名校錄取的學生人數)年份(屆)2014201520162017201841495557638296108106123(1)通過畫散點圖發現與之間具有線性相關關系,求關于的線性回歸方程;(保留兩位有效數字)(2)若已知該校2019年通過自主招生獲得降分資格的學生人數為61人,預測2019年高考該校考人名校的人數;(3)若從2014年和2018年考人名校的學生中采用分層抽樣的方式抽取出5個人回校宣傳,在選取的5個人中再選取2人進行演講,求進行演講的兩人是2018年畢業的人數的分布列和期望.參考公式:,參考數據:,,,20.(12分)已知向量,.(1)求的最小正周期;(2)若的內角的對邊分別為,且,求的面積.21.(12分)在平面直角坐標系中,直線的參數方程為(為參數),以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.(Ⅰ)設直線與曲線交于,兩點,求;(Ⅱ)若點為曲線上任意一點,求的取值范圍.22.(10分)為了解廣大學生家長對校園食品安全的認識,某市食品安全檢測部門對該市家長進行了一次校園食品安全網絡知識問卷調查,每一位學生家長僅有一次參加機會,現對有效問卷進行整理,并隨機抽取出了200份答卷,統計這些答卷的得分(滿分:100分)制出的頻率分布直方圖如圖所示,由頻率分布直方圖可以認為,此次問卷調查的得分服從正態分布,其中近似為這200人得分的平均值(同一組數據用該組區間的中點值作為代表).(1)請利用正態分布的知識求;(2)該市食品安全檢測部門為此次參加問卷調查的學生家長制定如下獎勵方案:①得分不低于的可以獲贈2次隨機話費,得分低于的可以獲贈1次隨機話費:②每次獲贈的隨機話費和對應的概率為:獲贈的隨機話費(單位:元)概率市食品安全檢測部門預計參加此次活動的家長約5000人,請依據以上數據估計此次活動可能贈送出多少話費?附:①;②若;則,,.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據題目所給的步驟進行計算,由此求得的值.【詳解】依題意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故選:A【點睛】本小題主要考查合情推理,考查中國古代數學文化,屬于基礎題.2、C【解析】

在等比數列中,由即可表示之間的關系.【詳解】由題可知,等比數列中,且公比為2,故故選:C【點睛】本題考查等比數列求和公式的應用,屬于基礎題.3、B【解析】

利用古典概型概率計算方法分析出符合題意的基本事件個數,結合組合數的計算即可出求得概率.【詳解】20個年份中天干相同的有10組(每組2個),地支相同的年份有8組(每組2個),從這20個年份中任取2個年份,則這2個年份的天干或地支相同的概率.故選:B.【點睛】本小題主要考查古典概型的計算,考查組合數的計算,考查學生分析問題的能力,難度較易.4、A【解析】

利用等差數列的求和公式及等差數列的性質可以求得結果.【詳解】由,,得.選A.【點睛】本題主要考查等差數列的求和公式及等差數列的性質,等差數列的等和性應用能快速求得結果.5、B【解析】

根據拋物線定義得,即可解得結果.【詳解】因為,所以.故選B【點睛】本題考查拋物線定義,考查基本分析求解能力,屬基礎題.6、C【解析】

分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系,再利用向量法求異面直線EF與BD所成角的余弦值.【詳解】由題可知,分別以AB,AD,AP所在直線為x軸,y軸,軸,建立如圖所示的空間直角坐標系.設.則.故異面直線EF與BD所成角的余弦值為.故選:C【點睛】本題主要考查空間向量和異面直線所成的角的向量求法,意在考查學生對這些知識的理解掌握水平.7、A【解析】

由余弦公式的二倍角可得,,再由誘導公式有,所以【詳解】∵∴由余弦公式的二倍角展開式有又∵∴故選:A【點睛】本題考查了學生對二倍角公式的應用,要求學生熟練掌握三角函數中的誘導公式,屬于簡單題8、A【解析】

本道題繪圖發現三角形周長最小時A,P位于同一水平線上,計算點P的坐標,計算斜率,即可.【詳解】結合題意,繪制圖像要計算三角形PAF周長最小值,即計算PA+PF最小值,結合拋物線性質可知,PF=PN,所以,故當點P運動到M點處,三角形周長最小,故此時M的坐標為,所以斜率為,故選A.【點睛】本道題考查了拋物線的基本性質,難度中等.9、A【解析】

根據圖象關于軸對稱可知關于對稱,從而得到在上單調遞增且;再根據自變量的大小關系得到函數值的大小關系.【詳解】為偶函數圖象關于軸對稱圖象關于對稱時,單調遞減時,單調遞增又且,即本題正確選項:【點睛】本題考查利用函數奇偶性、對稱性和單調性比較函數值的大小關系問題,關鍵是能夠通過奇偶性和對稱性得到函數的單調性,通過自變量的大小關系求得結果.10、B【解析】

作出可行域,平移目標直線即可求解.【詳解】解:作出可行域:由得,由圖形知,經過點時,其截距最大,此時最大得,當時,故選:B【點睛】考查線性規劃,是基礎題.11、B【解析】

根據正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.12、B【解析】

由焦點得拋物線方程,設點的坐標為,根據對稱可求出點的坐標,寫出直線方程,聯立拋物線求交點,計算弦長即可.【詳解】拋物線的焦點為,則,即,設點的坐標為,點的坐標為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點睛】本題主要考查了拋物線的標準方程,簡單幾何性質,點關于直線對稱,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

對函數求導,得出在處的一階導數值,即得出所求切線的斜率,再運用直線的點斜式求出切線的方程.【詳解】令,,所以,又,所求切線方程為,即.故答案為:.【點睛】本題考查運用函數的導函數求函數在切點處的切線方程,關鍵在于求出在切點處的導函數值就是切線的斜率,屬于基礎題.14、-1【解析】

由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優解,把最優解的坐標代入目標函數得答案.【詳解】由約束條件作出可行域如圖,化目標函數為,由圖可得,當直線過點時,直線在軸上的截距最大,由得即,則有最大值,故答案為.【點睛】本題主要考查線性規劃中利用可行域求目標函數的最值,屬簡單題.求目標函數最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數對應的最優解對應點(在可行域內平移變形后的目標函數,最先通過或最后通過的頂點就是最優解);(3)將最優解坐標代入目標函數求出最值.15、2025【解析】

利用賦值法,結合展開式中各項系數之和列方程,由此求得的值.再利用二項式展開式的通項公式,求得展開式中的系數.【詳解】依題意,令,解得,所以,則二項式的展開式的通項為:令,得,所以的系數為.故答案為:2025【點睛】本小題主要考查二項式展開式各項系數之和,考查二項式展開式指定項系數的求法,屬于基礎題.16、【解析】

由題意可在定義域上有四個不同的解等價于關于原點對稱的函數與函數的圖象有兩個交點,運用參變分離和構造函數,進而借助導數分析單調性與極值,畫出函數圖象,即可得到所求范圍.【詳解】已知定義在上的函數若在定義域上有四個不同的解等價于關于原點對稱的函數與函數f(x)=lnx-x(x>0)的圖象有兩個交點,聯立可得有兩個解,即可設,則,進而且不恒為零,可得在單調遞增.由可得時,單調遞減;時,單調遞增,即在處取得極小值且為作出的圖象,可得時,有兩個解.故答案為:【點睛】本題考查利用利用導數解決方程的根的問題,還考查了等價轉化思想與函數對稱性的應用,屬于難題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)(為參數);(Ⅱ)【解析】

(Ⅰ)設點,,則,代入化簡得到答案.(Ⅱ)分別計算,的極坐標方程為,,取代入計算得到答案.【詳解】(Ⅰ)設點,,,故,故的參數方程為:(為參數).(Ⅱ),故,極坐標方程為:;,故,極坐標方程為:.,故,,故.【點睛】本題考查了參數方程,極坐標方程,弦長,意在考查學生的計算能力和轉化能力.18、(Ⅰ)分布列見解析,;(Ⅱ);(Ⅲ)至少增加2人.【解析】

(Ⅰ)求出X的所有可能取值為9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)當P(a≤X≤b)取到最大值時,求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前兩問的結果,判斷至少增加2人.【詳解】(Ⅰ)X的取值為:9,12,15,18,24;,,,,,X的分布列為:X912151824P故X的數學期望;(Ⅱ)當P(a≤X≤b)取到最大值時,a,b的值可能為:,或,或.經計算,,,所以P(a≤X≤b)的最大值為.(Ⅲ)至少增加2人.【點睛】本題考查離散型隨機變量及其分布列,離散型隨機變量的期望與方差,屬于中等題.19、(1);(2)117人;(3)分布列見解析,【解析】

(1)首先求得和,再代入公式即可列方程,由此求得關于的線性回歸方程;(2)根據回歸直線方程計算公式,計算可得人數;(3)和被選中的人數分別為2和3,利用超幾何分布分布列的計算公式,計算出的分布列,并求得數學期望.【詳解】(1)由題,所以線性回歸方程為(若第一問求出.)(2)當時,所以預測2019年高考該校考入名校的人數約為117人(3)由題知和被選中的人數分別為2和3,進行演講的兩人是2018年畢業的人數的所有可能取值為0,1,2,,的分布列為012【點睛】本小題主要考查平均數有關計算,考查回歸直線方程的計算,考查期望的計算,考查超幾何分布和數據處理能力,屬于中檔題.20、(1);(2)或【解析】

(1)利用平面向量數量積的坐標運算可得,利用正弦函數的周期性即可求解;(2)由(1)可求,結合范圍,可求的值,由余弦定理可求的值,進而根據三角形的面積公式即可求解.【詳解】(1)∴最小正周期.(2)由(1)知,∴∴,又∴或.解得或當時,由余弦定理得即,解得.此時.當時,由余弦定理得.即,解得.此時.【點睛】本題主要考查了平面向量數量積的坐標運算、正弦函數的周期性,考查余弦定理、三角形的面積公式在解三角形中的綜合應用,考查

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論