云南省文山州硯山二中2024年高三考前熱身數學試卷含解析_第1頁
云南省文山州硯山二中2024年高三考前熱身數學試卷含解析_第2頁
云南省文山州硯山二中2024年高三考前熱身數學試卷含解析_第3頁
云南省文山州硯山二中2024年高三考前熱身數學試卷含解析_第4頁
云南省文山州硯山二中2024年高三考前熱身數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

云南省文山州硯山二中2024年高三考前熱身數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知為虛數單位,若復數,則A. B.C. D.2.已知△ABC中,.點P為BC邊上的動點,則的最小值為()A.2 B. C. D.3.設,是雙曲線的左,右焦點,是坐標原點,過點作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.4.如圖所示,三國時代數學家趙爽在《周髀算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內角為,若向弦圖內隨機拋擲500顆米粒(米粒大小忽略不計,取),則落在小正方形(陰影)內的米粒數大約為()A.134 B.67 C.182 D.1085.曲線在點處的切線方程為,則()A. B. C.4 D.86.已知函數f(x)=,若關于x的方程f(x)=kx-恰有4個不相等的實數根,則實數k的取值范圍是()A. B.C. D.7.已知,是函數圖像上不同的兩點,若曲線在點,處的切線重合,則實數的最小值是()A. B. C. D.18.當時,函數的圖象大致是()A. B.C. D.9.已知函數是定義在上的偶函數,且在上單調遞增,則()A. B.C. D.10.函數,,則“的圖象關于軸對稱”是“是奇函數”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.小明有3本作業本,小波有4本作業本,將這7本作業本混放在-起,小明從中任取兩本.則他取到的均是自己的作業本的概率為()A. B. C. D.12.若不等式在區間內的解集中有且僅有三個整數,則實數的取值范圍是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點是直線上的一點,將直線繞點逆時針方向旋轉角,所得直線方程是,若將它繼續旋轉角,所得直線方程是,則直線的方程是______.14.函數的定義域是.15.已知復數,其中為虛數單位,則的模為_______________.16.已知隨機變量服從正態分布,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線,焦點為,直線交拋物線于兩點,交拋物線的準線于點,如圖所示,當直線經過焦點時,點恰好是的中點,且.(1)求拋物線的方程;(2)點是原點,設直線的斜率分別是,當直線的縱截距為1時,有數列滿足,設數列的前n項和為,已知存在正整數使得,求m的值.18.(12分)在銳角中,分別是角的對邊,,,且.(1)求角的大小;(2)求函數的值域.19.(12分)在四棱柱中,底面為正方形,,平面.(1)證明:平面;(2)若,求二面角的余弦值.20.(12分)金秋九月,丹桂飄香,某高校迎來了一大批優秀的學生.新生接待其實也是和社會溝通的一個平臺.校團委、學生會從在校學生中隨機抽取了160名學生,對是否愿意投入到新生接待工作進行了問卷調查,統計數據如下:愿意不愿意男生6020女士4040(1)根據上表說明,能否有99%把握認為愿意參加新生接待工作與性別有關;(2)現從參與問卷調查且愿意參加新生接待工作的學生中,采用按性別分層抽樣的方法,選取10人.若從這10人中隨機選取3人到火車站迎接新生,設選取的3人中女生人數為,寫出的分布列,并求.附:,其中.0.050.010.0013.8416.63510.82821.(12分)已知函數,.(1)若函數在上單調遞減,且函數在上單調遞增,求實數的值;(2)求證:(,且).22.(10分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大小;(2)在棱上確定一點,使二面角的平面角的余弦值為.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

因為,所以,故選B.2、D【解析】

以BC的中點為坐標原點,建立直角坐標系,可得,設,運用向量的坐標表示,求得點A的軌跡,進而得到關于a的二次函數,可得最小值.【詳解】以BC的中點為坐標原點,建立如圖的直角坐標系,可得,設,由,可得,即,則,當時,的最小值為.故選D.【點睛】本題考查向量數量積的坐標表示,考查轉化思想和二次函數的值域解法,考查運算能力,屬于中檔題.3、B【解析】

設過點作的垂線,其方程為,聯立方程,求得,,即,由,列出相應方程,求出離心率.【詳解】解:不妨設過點作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.【點睛】本題主要考查雙曲線的概念、直線與直線的位置關系等基礎知識,考查運算求解、推理論證能力,屬于中檔題.4、B【解析】

根據幾何概型的概率公式求出對應面積之比即可得到結論.【詳解】解:設大正方形的邊長為1,則小直角三角形的邊長為,

則小正方形的邊長為,小正方形的面積,

則落在小正方形(陰影)內的米粒數大約為,

故選:B.【點睛】本題主要考查幾何概型的概率的應用,求出對應的面積之比是解決本題的關鍵.5、B【解析】

求函數導數,利用切線斜率求出,根據切線過點求出即可.【詳解】因為,所以,故,解得,又切線過點,所以,解得,所以,故選:B【點睛】本題主要考查了導數的幾何意義,切線方程,屬于中檔題.6、D【解析】

由已知可將問題轉化為:y=f(x)的圖象和直線y=kx-有4個交點,作出圖象,由圖可得:點(1,0)必須在直線y=kx-的下方,即可求得:k>;再求得直線y=kx-和y=lnx相切時,k=;結合圖象即可得解.【詳解】若關于x的方程f(x)=kx-恰有4個不相等的實數根,則y=f(x)的圖象和直線y=kx-有4個交點.作出函數y=f(x)的圖象,如圖,故點(1,0)在直線y=kx-的下方.∴k×1->0,解得k>.當直線y=kx-和y=lnx相切時,設切點橫坐標為m,則k==,∴m=.此時,k==,f(x)的圖象和直線y=kx-有3個交點,不滿足條件,故所求k的取值范圍是,故選D..【點睛】本題主要考查了函數與方程思想及轉化能力,還考查了導數的幾何意義及計算能力、觀察能力,屬于難題.7、B【解析】

先根據導數的幾何意義寫出在兩點處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關系樹,從而得出,令函數,結合導數求出最小值,即可選出正確答案.【詳解】解:當時,,則;當時,則.設為函數圖像上的兩點,當或時,,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設則,由可得則當時,的最大值為.則在上單調遞減,則.故選:B.【點睛】本題考查了導數的幾何意義,考查了推理論證能力,考查了函數與方程、分類與整合、轉化與化歸等思想方法.本題的難點是求出和的函數關系式.本題的易錯點是計算.8、B【解析】由,解得,即或,函數有兩個零點,,不正確,設,則,由,解得或,由,解得:,即是函數的一個極大值點,不成立,排除,故選B.【方法點晴】本題通過對多個圖象的選擇考察函數的解析式、定義域、值域、單調性,導數的應用以及數學化歸思想,屬于難題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據函數的定義域、值域、單調性、奇偶性、特殊點以及時函數圖象的變化趨勢,利用排除法,將不合題意選項一一排除.9、C【解析】

根據題意,由函數的奇偶性可得,,又由,結合函數的單調性分析可得答案.【詳解】根據題意,函數是定義在上的偶函數,則,,有,又由在上單調遞增,則有,故選C.【點睛】本題主要考查函數的奇偶性與單調性的綜合應用,注意函數奇偶性的應用,屬于基礎題.10、B【解析】

根據函數奇偶性的性質,結合充分條件和必要條件的定義進行判斷即可.【詳解】設,若函數是上的奇函數,則,所以,函數的圖象關于軸對稱.所以,“是奇函數”“的圖象關于軸對稱”;若函數是上的偶函數,則,所以,函數的圖象關于軸對稱.所以,“的圖象關于軸對稱”“是奇函數”.因此,“的圖象關于軸對稱”是“是奇函數”的必要不充分條件.故選:B.【點睛】本題主要考查充分條件和必要條件的判斷,結合函數奇偶性的性質判斷是解決本題的關鍵,考查推理能力,屬于中等題.11、A【解析】

利用計算即可,其中表示事件A所包含的基本事件個數,為基本事件總數.【詳解】從7本作業本中任取兩本共有種不同的結果,其中,小明取到的均是自己的作業本有種不同結果,由古典概型的概率計算公式,小明取到的均是自己的作業本的概率為.故選:A.【點睛】本題考查古典概型的概率計算問題,考查學生的基本運算能力,是一道基礎題.12、C【解析】

由題可知,設函數,,根據導數求出的極值點,得出單調性,根據在區間內的解集中有且僅有三個整數,轉化為在區間內的解集中有且僅有三個整數,結合圖象,可求出實數的取值范圍.【詳解】設函數,,因為,所以,或,因為時,,或時,,,其圖象如下:當時,至多一個整數根;當時,在內的解集中僅有三個整數,只需,,所以.故選:C.【點睛】本題考查不等式的解法和應用問題,還涉及利用導數求函數單調性和函數圖象,同時考查數形結合思想和解題能力.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出點坐標,由于直線與直線垂直,得出直線的斜率為,再由點斜式寫出直線的方程.【詳解】由于直線可看成直線先繞點逆時針方向旋轉角,再繼續旋轉角得到,則直線與直線垂直,即直線的斜率為所以直線的方程為,即故答案為:【點睛】本題主要考查了求直線的方程,涉及了求直線的交點以及直線與直線的位置關系,屬于中檔題.14、【解析】解:因為,故定義域為15、【解析】

利用復數模的計算公式求解即可.【詳解】解:由,得,所以.故答案為:.【點睛】本題考查復數模的求法,屬于基礎題.16、0.22.【解析】

正態曲線關于x=μ對稱,根據對稱性以及概率和為1求解即可。【詳解】【點睛】本題考查正態分布曲線的特點及曲線所表示的意義,是一個基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)設出直線的方程,再與拋物線聯立方程組,進而求得點的坐標,結合弦長即可求得拋物線的方程;(2)設直線的方程,運用韋達定理可得,可得之間的關系,再運用進行裂項,可求得,解不等式求得的值.【詳解】解:(1)設過拋物線焦點的直線方程為,與拋物線方程聯立得:,設,所以,,,所以拋物線方程為(2)設直線方程為,,,,,,由得.【點睛】本題考查了直線與拋物線的關系,考查了韋達定理和運用裂項法求數列的和,考查了運算能力,屬于中檔題.18、(1);(2)【解析】

(1)由向量平行的坐標表示、正弦定理邊化角和兩角和差正弦公式可化簡求得,進而得到;(2)利用兩角和差余弦公式、二倍角和輔助角公式化簡函數為,根據的范圍可確定的范圍,結合正弦函數圖象可確定所求函數的值域.【詳解】(1),,由正弦定理得:,即,,,,又,.(2)在銳角中,,..,,,,函數的值域為.【點睛】本題考查三角恒等變換、解三角形和三角函數性質的綜合應用問題;涉及到共線向量的坐標表示、利用三角恒等變換公式化簡求值、正弦定理邊化角的應用、正弦型函數值域的求解等知識.19、(1)詳見解析;(2).【解析】

(1)連接,設,可證得四邊形為平行四邊形,由此得到,根據線面平行判定定理可證得結論;(2)以為原點建立空間直角坐標系,利用二面角的空間向量求法可求得結果.【詳解】(1)連接,設,連接,在四棱柱中,分別為的中點,,四邊形為平行四邊形,,平面,平面,平面.(2)以為原點,所在直線分別為軸建立空間直角坐標系.設,四邊形為正方形,,,則,,,,,,,設為平面的法向量,為平面的法向量,由得:,令,則,,由得:,令,則,,,,,二面角為銳二面角,二面角的余弦值為.【點睛】本題考查立體幾何中線面平行關系的證明、空間向量法求解二面角的問題;關鍵是能夠熟練掌握二面角的向量求法,易錯點是求得法向量夾角余弦值后,未根據圖形判斷二面角為銳二面角還是鈍二面角,造成余弦值符號出現錯誤.20、(1)有99%把握認為愿意參加新生接待工作與性別有關;(2)詳見解析.【解析】

(1)計算得到,由此可得結論;(2)根據分層抽樣原則可得男生和女生人數,由超幾何分布概率公式可求得的所有可能取值所對應的概率,由此得到分布列;根據數學期望計算公式計算可得期望.【詳解】(1)∵的觀測值,有的把握認為愿意參加新生接待工作與性別有關.(2)根據分層抽樣方法得:男生有人,女生有人,選取的人中,男生有人,女生有人.則的可能取值有,,,,,的分布列為:.【點睛】本題考查獨立性檢驗、分層抽樣、超幾何分布的分布列和數學期望的求解;關鍵是能夠明確隨機變量服從于超幾何分布,進而利用超幾何分布概率公式求得隨機變量每個取值所對應的概率.21、(1)1;(2)見解析【解析】

(1)分別求得與的導函數,由導函數與單調性關系即可求得的值;(2)由(1)可知當時,,當時,,因而,構造,由對數運算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數在上單調遞減,∴,即在上恒成立,∴,又∵函數在上單調遞增

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論