




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽師范大學附中2024年高三第二次聯考數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數的圖象如圖所示,則下列說法錯誤的是()A.函數在上單調遞減B.函數在上單調遞增C.函數的對稱中心是D.函數的對稱軸是2.在中,內角所對的邊分別為,若依次成等差數列,則()A.依次成等差數列 B.依次成等差數列C.依次成等差數列 D.依次成等差數列3.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻)若從八卦中任取兩卦,這兩卦的六個爻中恰有兩個陽爻的概率為()A. B. C. D.4.甲、乙、丙、丁四位同學高考之后計劃去三個不同社區進行幫扶活動,每人只能去一個社區,每個社區至少一人.其中甲必須去社區,乙不去社區,則不同的安排方法種數為()A.8 B.7 C.6 D.55.設為等差數列的前項和,若,則A. B.C. D.6.已知雙曲線的一個焦點為,且與雙曲線的漸近線相同,則雙曲線的標準方程為()A. B. C. D.7.記其中表示不大于x的最大整數,若方程在在有7個不同的實數根,則實數k的取值范圍()A. B. C. D.8.已知平面向量,滿足,,且,則()A.3 B. C. D.59.設集合則()A. B. C. D.10.設集合,,若集合中有且僅有2個元素,則實數的取值范圍為A. B.C. D.11.已知拋物線,F為拋物線的焦點且MN為過焦點的弦,若,,則的面積為()A. B. C. D.12.直線l過拋物線的焦點且與拋物線交于A,B兩點,則的最小值是A.10 B.9 C.8 D.7二、填空題:本題共4小題,每小題5分,共20分。13.已知(為虛數單位),則復數________.14.二項式的展開式中所有項的二項式系數之和是64,則展開式中的常數項為______.15.二項式的展開式中項的系數為_____.16.已知兩圓相交于兩點,,若兩圓圓心都在直線上,則的值是________________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,直線過橢圓的右焦點,過的直線交橢圓于兩點(均異于左、右頂點).(1)求橢圓的方程;(2)已知直線,為橢圓的右頂點.若直線交于點,直線交于點,試判斷是否為定值,若是,求出定值;若不是,說明理由.18.(12分)隨著現代社會的發展,我國對于環境保護越來越重視,企業的環保意識也越來越強.現某大型企業為此建立了5套環境監測系統,并制定如下方案:每年企業的環境監測費用預算定為1200萬元,日常全天候開啟3套環境監測系統,若至少有2套系統監測出排放超標,則立即檢查污染源處理系統;若有且只有1套系統監測出排放超標,則立即同時啟動另外2套系統進行1小時的監測,且后啟動的這2套監測系統中只要有1套系統監測出排放超標,也立即檢查污染源處理系統.設每個時間段(以1小時為計量單位)被每套系統監測出排放超標的概率均為,且各個時間段每套系統監測出排放超標情況相互獨立.(1)當時,求某個時間段需要檢查污染源處理系統的概率;(2)若每套環境監測系統運行成本為300元/小時(不啟動則不產生運行費用),除運行費用外,所有的環境監測系統每年的維修和保養費用需要100萬元.現以此方案實施,問該企業的環境監測費用是否會超過預算(全年按9000小時計算)?并說明理由.19.(12分)已知函數.(1)若,求的取值范圍;(2)若,對,不等式恒成立,求的取值范圍.20.(12分)如圖,在四棱錐中,底面為直角梯形,,,,,,點、分別為,的中點,且平面平面.(1)求證:平面.(2)若,求直線與平面所成角的正弦值.21.(12分)已知函數.(1)證明:當時,;(2)若函數有三個零點,求實數的取值范圍.22.(10分)已知數列是各項均為正數的等比數列,數列為等差數列,且,,.(1)求數列與的通項公式;(2)求數列的前項和;(3)設為數列的前項和,若對于任意,有,求實數的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據圖象求得函數的解析式,結合余弦函數的單調性與對稱性逐項判斷即可.【詳解】由圖象可得,函數的周期,所以.將點代入中,得,解得,由,可得,所以.令,得,故函數在上單調遞減,當時,函數在上單調遞減,故A正確;令,得,故函數在上單調遞增.當時,函數在上單調遞增,故B錯誤;令,得,故函數的對稱中心是,故C正確;令,得,故函數的對稱軸是,故D正確.故選:B.【點睛】本題考查由圖象求余弦型函數的解析式,同時也考查了余弦型函數的單調性與對稱性的判斷,考查推理能力與計算能力,屬于中等題.2、C【解析】
由等差數列的性質、同角三角函數的關系以及兩角和的正弦公式可得,由正弦定理可得,再由余弦定理可得,從而可得結果.【詳解】依次成等差數列,,正弦定理得,由余弦定理得,,即依次成等差數列,故選C.【點睛】本題主要考查等差數列的定義、正弦定理、余弦定理,屬于難題.解三角形時,有時可用正弦定理,有時也可用余弦定理,應注意用哪一個定理更方便、簡捷.如果式子中含有角的余弦或邊的二次式,要考慮用余弦定理;如果遇到的式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到.3、C【解析】
分類討論,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦;從僅有兩個陽爻的有巽、離、兌三卦中取一個,再取沒有陽爻的坤卦,計算滿足條件的種數,利用古典概型即得解.【詳解】由圖可知,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦滿足條件,其種數是;僅有兩個陽爻的有巽、離、兌三卦,沒有陽爻的是坤卦,此時取兩卦滿足條件的種數是,于是所求的概率.故選:C【點睛】本題考查了古典概型的應用,考查了學生綜合分析,分類討論,數學運算的能力,屬于基礎題.4、B【解析】根據題意滿足條件的安排為:A(甲,乙)B(丙)C(丁);A(甲,乙)B(丁)C(丙);A(甲,丙)B(丁)C(乙);A(甲,丁)B(丙)C(乙);A(甲)B(丙,丁)C(乙);A(甲)B(丁)C(乙,丙);A(甲)B(丙)C(丁,乙);共7種,選B.5、C【解析】
根據等差數列的性質可得,即,所以,故選C.6、B【解析】
根據焦點所在坐標軸和漸近線方程設出雙曲線的標準方程,結合焦點坐標求解.【詳解】∵雙曲線與的漸近線相同,且焦點在軸上,∴可設雙曲線的方程為,一個焦點為,∴,∴,故的標準方程為.故選:B【點睛】此題考查根據雙曲線的漸近線和焦點求解雙曲線的標準方程,易錯點在于漏掉考慮焦點所在坐標軸導致方程形式出錯.7、D【解析】
做出函數的圖象,問題轉化為函數的圖象在有7個交點,而函數在上有3個交點,則在上有4個不同的交點,數形結合即可求解.【詳解】作出函數的圖象如圖所示,由圖可知方程在上有3個不同的實數根,則在上有4個不同的實數根,當直線經過時,;當直線經過時,,可知當時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數根.故選:D.【點睛】本題考查方程根的個數求參數,利用函數零點和方程之間的關系轉化為兩個函數的交點是解題的關鍵,運用數形結合是解決函數零點問題的基本思想,屬于中檔題.8、B【解析】
先求出,再利用求出,再求.【詳解】解:由,所以,,,故選:B【點睛】考查向量的數量積及向量模的運算,是基礎題.9、C【解析】
直接求交集得到答案.【詳解】集合,則.故選:.【點睛】本題考查了交集運算,屬于簡單題.10、B【解析】
由題意知且,結合數軸即可求得的取值范圍.【詳解】由題意知,,則,故,又,則,所以,所以本題答案為B.【點睛】本題主要考查了集合的關系及運算,以及借助數軸解決有關問題,其中確定中的元素是解題的關鍵,屬于基礎題.11、A【解析】
根據可知,再利用拋物線的焦半徑公式以及三角形面積公式求解即可.【詳解】由題意可知拋物線方程為,設點點,則由拋物線定義知,,則.由得,則.又MN為過焦點的弦,所以,則,所以.故選:A【點睛】本題考查拋物線的方程應用,同時也考查了焦半徑公式等.屬于中檔題.12、B【解析】
根據拋物線中過焦點的兩段線段關系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標準方程可知p=2因為直線l過拋物線的焦點,由過拋物線焦點的弦的性質可知所以因為為線段長度,都大于0,由基本不等式可知,此時所以選B【點睛】本題考查了拋物線的基本性質及其簡單應用,基本不等式的用法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
解:故答案為:【點睛】本題考查復數代數形式的乘除運算,屬于基礎題.14、【解析】
由二項式系數性質求出,由二項展開式通項公式得出常數項的項數,從而得常數項.【詳解】由題意,.展開式通項為,由得,∴常數項為.故答案為:.【點睛】本題考查二項式定理,考查二項式系數的性質,掌握二項展開式通項公式是解題關鍵.15、15【解析】
由題得,,令,解得,代入可得展開式中含x6項的系數.【詳解】由題得,,令,解得,所以二項式的展開式中項的系數為.故答案為:15【點睛】本題主要考查了二項式定理的應用,考查了利用通項公式去求展開式中某項的系數問題.16、【解析】
根據題意,相交兩圓的連心線垂直平分相交弦,可得與直線垂直,且的中點在這條直線上,列出方程解得即可得到結論.【詳解】由,,設的中點為,根據題意,可得,且,解得,,,故.故答案為:.【點睛】本題考查相交弦的性質,解題的關鍵在于利用相交弦的性質,即兩圓的連心線垂直平分相交弦,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)定值為0.【解析】
(1)根據直線方程求焦點坐標,即得c,再根據離心率得,(2)先設直線方程以及各點坐標,化簡,再聯立直線方程與橢圓方程,利用韋達定理代入化簡得結果.【詳解】(1)因為直線過橢圓的右焦點,所以,因為離心率為,所以,(2),設直線,則因此由得,所以,因此即【點睛】本題考查橢圓方程以及直線與橢圓位置關系,考查綜合分析求解能力,屬中檔題.18、(1);(2)不會超過預算,理由見解析【解析】
(1)求出某個時間段在開啟3套系統就被確定需要檢查污染源處理系統的概率為,某個時間段在需要開啟另外2套系統才能確定需要檢查污染源處理系統的概率為,可得某個時間段需要檢查污染源處理系統的概率;(2)設某個時間段環境監測系統的運行費用為元,則的可能取值為900,1500.求得,,求得其分布列和期望,對其求導,研究函數的單調性,可得期望的最大值,從而得出結論.【詳解】(1)某個時間段在開啟3套系統就被確定需要檢查污染源處理系統的概率為,某個時間段在需要開啟另外2套系統才能確定需要檢查污染源處理系統的概率為某個時間段需要檢查污染源處理系統的概率為.(2)設某個時間段環境監測系統的運行費用為元,則的可能取值為900,1500.,令,則當時,,在上單調遞增;當時,,在上單調遞減,的最大值為,實施此方案,最高費用為(萬元),,故不會超過預算.【點睛】本題考查獨立重復事件發生的概率、期望,及運用求導函數研究期望的最值,由根據期望值確定方案,此類題目解決的關鍵在于將生活中的量轉化為數學中和量,屬于中檔題.19、(1);(2).【解析】
(1)分類討論,,,即可得出結果;(2)先由題意,將問題轉化為即可,再求出,的最小值,解不等式即可得出結果.【詳解】(1)由得,若,則,顯然不成立;若,則,,即;若,則,即,顯然成立,綜上所述,的取值范圍是.(2)由題意知,要使得不等式恒成立,只需,當時,,所以;因為,所以,解得,結合,所以的取值范圍是.【點睛】本題主要考查含絕對值不等式的解法,以及由不等式恒成立求參數的問題,熟記分類討論的思想、以及絕對值不等式的性質即可,屬于常考題型.20、(1)見解析(2)【解析】
(1)首先可得,再面面垂直的性質可得平面,即可得到,再由,即可得到線面垂直;(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標系,利用空間向量法求出線面角;【詳解】解:(1)∵,點為的中點,∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分別為,的中點,∴,∴,又平面,平面,,∴平面.(2)過點做平面的垂線,以為原點,分別以,,為,,軸建立空間直角坐標系,∵,∴,,,,∴,,,設平面的法向量為,由,得,令,得,∴,∴直線與平面所成角的正弦值為.【點睛】本題考查線面垂直的判定,面面垂直的性質定理的應用,利用空間向量法求線面角,屬于中檔題.21、(1)見解析;(2)【解析】
(1)要證明,只需證明即可;(2)有3個根,可轉化為有3個根,即與有3個不同交點,利用導數作出的圖象即可.【詳解】(1)令,則,當時,,故在上單調遞增,所以,即,所以.(2)由已知,,依題意,有3個零點,即有3個根,顯然0不是其根,所以有3個根,令,則,當時,,當時,,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 第八章+認識國家(美國、巴西)(串講課件)-2024-2025學年七年級地理下學期期末考點大串講(中圖版北京2024)
- GCP質量管理精要
- Brand KPIs for online betting:Betfair in Brazil-英文培訓課件2025.5
- 2025年(完整版)小升初數學公式
- AI大模型賦能區域醫療數字化醫聯體建設方案
- 華為公司干部管理與培養(一)7P
- 山東省德州市武城縣五校聯考2024-2025學年八年級下學期第二次月考數學試卷(答案不完整)
- 先進先出試題及答案
- 武漢理化試題及答案詳解
- 廣東省東莞市光正實驗學校2024-2025學年高一下學期期中考試英語試卷(解析版)
- 城市開發運營方案
- 空調維保投標方案(技術標)
- IATF16949標準培訓教材
- 國家開放大學《可編程控制器應用實訓》形考任務4(實訓四)參考答案
- 國家開放大學《會計實務專題》形考任務1-4參考答案
- 簡易機器人課程設計報告
- MATLAB仿真課程設計-對磁盤驅動讀取系統校正部分的設計
- 動作經濟原則手邊化POU改善
- 農村公路基礎設施統計調查制度
- (完整版)(excel版)工信部通信2016451號定額-修正版
- 土壤學-土壤分類和調查課件
評論
0/150
提交評論