2024屆北京市懷柔區市級名校高三3月份模擬考試數學試題含解析_第1頁
2024屆北京市懷柔區市級名校高三3月份模擬考試數學試題含解析_第2頁
2024屆北京市懷柔區市級名校高三3月份模擬考試數學試題含解析_第3頁
2024屆北京市懷柔區市級名校高三3月份模擬考試數學試題含解析_第4頁
2024屆北京市懷柔區市級名校高三3月份模擬考試數學試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆北京市懷柔區市級名校高三3月份模擬考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,分別是橢圓的左、右焦點,過的直線交橢圓于,兩點,且,,則橢圓的離心率為()A. B. C. D.2.若雙曲線:的一條漸近線方程為,則()A. B. C. D.3.若函數有且僅有一個零點,則實數的值為()A. B. C. D.4.已知集合,則()A. B. C. D.5.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點,若,則λ+μ的值為()A. B. C. D.6.已知函數,若關于的方程有4個不同的實數根,則實數的取值范圍為()A. B. C. D.7.如圖,是圓的一條直徑,為半圓弧的兩個三等分點,則()A. B. C. D.8.若函數在處取得極值2,則()A.-3 B.3 C.-2 D.29.已知函數在上有兩個零點,則的取值范圍是()A. B. C. D.10.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.已知等差數列的前項和為,若,則等差數列公差()A.2 B. C.3 D.412.框圖與程序是解決數學問題的重要手段,實際生活中的一些問題在抽象為數學模型之后,可以制作框圖,編寫程序,得到解決,例如,為了計算一組數據的方差,設計了如圖所示的程序框圖,其中輸入,,,,,,,則圖中空白框中應填入()A., B. C., D.,二、填空題:本題共4小題,每小題5分,共20分。13.已知實數,滿足約束條件則的最大值為________.14.已知為偶函數,當時,,則__________.15.已知a,b均為正數,且,的最小值為________.16.已知點是拋物線的準線上一點,F為拋物線的焦點,P為拋物線上的點,且,若雙曲線C中心在原點,F是它的一個焦點,且過P點,當m取最小值時,雙曲線C的離心率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,圓C的參數方程(為參數),以O為極點,x軸的非負半軸為極軸建立極坐標系.(1)求圓C的極坐標方程;(2)直線l的極坐標方程是,射線與圓C的交點為O、P,與直線l的交點為Q,求線段的長.18.(12分)設,(1)求的單調區間;(2)設恒成立,求實數的取值范圍.19.(12分)設函數(其中),且函數在處的切線與直線平行.(1)求的值;(2)若函數,求證:恒成立.20.(12分)在平面直角坐標系中,直線的參數方程為(為參數),直線與曲線交于兩點.(1)求的長;(2)在以為極點,軸的正半軸為極軸建立的極坐標系中,設點的極坐標為,求點到線段中點的距離.21.(12分)在角中,角A、B、C的對邊分別是a、b、c,若.(1)求角A;(2)若的面積為,求的周長.22.(10分)已知凸邊形的面積為1,邊長,,其內部一點到邊的距離分別為.求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據表示出線段長度,由勾股定理,解出每條線段的長度,再由勾股定理構造出關系,求出離心率.【詳解】設,則由橢圓的定義,可以得到,在中,有,解得在中,有整理得,故選C項.【點睛】本題考查幾何法求橢圓離心率,是求橢圓離心率的一個常用方法,通過幾何關系,構造出關系,得到離心率.屬于中檔題.2、A【解析】

根據雙曲線的漸近線列方程,解方程求得的值.【詳解】由題意知雙曲線的漸近線方程為,可化為,則,解得.故選:A【點睛】本小題主要考查雙曲線的漸近線,屬于基礎題.3、D【解析】

推導出函數的圖象關于直線對稱,由題意得出,進而可求得實數的值,并對的值進行檢驗,即可得出結果.【詳解】,則,,,所以,函數的圖象關于直線對稱.若函數的零點不為,則該函數的零點必成對出現,不合題意.所以,,即,解得或.①當時,令,得,作出函數與函數的圖象如下圖所示:此時,函數與函數的圖象有三個交點,不合乎題意;②當時,,,當且僅當時,等號成立,則函數有且只有一個零點.綜上所述,.故選:D.【點睛】本題考查利用函數的零點個數求參數,考查函數圖象對稱性的應用,解答的關鍵就是推導出,在求出參數后要對參數的值進行檢驗,考查分析問題和解決問題的能力,屬于中等題.4、B【解析】

計算,再計算交集得到答案【詳解】,表示偶數,故.故選:.【點睛】本題考查了集合的交集,意在考查學生的計算能力.5、B【解析】

建立平面直角坐標系,用坐標表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標系,則D(0,0).不妨設AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點睛】本題主要考查了由平面向量線性運算的結果求參數,屬于中檔題.6、C【解析】

求導,先求出在單增,在單減,且知設,則方程有4個不同的實數根等價于方程在上有兩個不同的實數根,再利用一元二次方程根的分布條件列不等式組求解可得.【詳解】依題意,,令,解得,,故當時,,當,,且,故方程在上有兩個不同的實數根,故,解得.故選:C.【點睛】本題考查確定函數零點或方程根個數.其方法:(1)構造法:構造函數(易求,可解),轉化為確定的零點個數問題求解,利用導數研究該函數的單調性、極值,并確定定義區間端點值的符號(或變化趨勢)等,畫出的圖象草圖,數形結合求解;(2)定理法:先用零點存在性定理判斷函數在某區間上有零點,然后利用導數研究函數的單調性、極值(最值)及區間端點值符號,進而判斷函數在該區間上零點的個數.7、B【解析】

連接、,即可得到,,再根據平面向量的數量積及運算律計算可得;【詳解】解:連接、,,是半圓弧的兩個三等分點,,且,所以四邊形為棱形,.故選:B【點睛】本題考查平面向量的數量積及其運算律的應用,屬于基礎題.8、A【解析】

對函數求導,可得,即可求出,進而可求出答案.【詳解】因為,所以,則,解得,則.故選:A.【點睛】本題考查了函數的導數與極值,考查了學生的運算求解能力,屬于基礎題.9、C【解析】

對函數求導,對a分類討論,分別求得函數的單調性及極值,結合端點處的函數值進行判斷求解.【詳解】∵,.當時,,在上單調遞增,不合題意.當時,,在上單調遞減,也不合題意.當時,則時,,在上單調遞減,時,,在上單調遞增,又,所以在上有兩個零點,只需即可,解得.綜上,的取值范圍是.故選C.【點睛】本題考查了利用導數解決函數零點的問題,考查了函數的單調性及極值問題,屬于中檔題.10、B【解析】

分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當,不充分故是必要不充分條件,答案選B【點睛】本題考查了充分必要條件,屬于簡單題.11、C【解析】

根據等差數列的求和公式即可得出.【詳解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故選C.【點睛】本題主要考查了等差數列的求和公式,考查了推理能力與計算能力,屬于中檔題.12、A【解析】

依題意問題是,然后按直到型驗證即可.【詳解】根據題意為了計算7個數的方差,即輸出的,觀察程序框圖可知,應填入,,故選:A.【點睛】本題考查算法與程序框圖,考查推理論證能力以及轉化與化歸思想,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

作出約束條件表示的可行域,轉化目標函數為,當目標函數經過點時,直線的截距最大,取得最大值,即得解.【詳解】作出約束條件表示的可行域是以為頂點的三角形及其內部,轉化目標函數為當目標函數經過點時,直線的截距最大此時取得最大值1.故答案為:1【點睛】本題考查了線性規劃問題,考查了學生轉化劃歸,數形結合,數學運算能力,屬于基礎題.14、【解析】

由偶函數的性質直接求解即可【詳解】.故答案為【點睛】本題考查函數的奇偶性,對數函數的運算,考查運算求解能力15、【解析】

本題首先可以根據將化簡為,然后根據基本不等式即可求出最小值.【詳解】因為,所以,當且僅當,即、時取等號,故答案為:.【點睛】本題考查根據基本不等式求最值,基本不等式公式為,在使用基本不等式的時候要注意“”成立的情況,考查化歸與轉化思想,是中檔題.16、【解析】

由點坐標可確定拋物線方程,由此得到坐標和準線方程;過作準線的垂線,垂足為,根據拋物線定義可得,可知當直線與拋物線相切時,取得最小值;利用拋物線切線的求解方法可求得點坐標,根據雙曲線定義得到實軸長,結合焦距可求得所求的離心率.【詳解】是拋物線準線上的一點拋物線方程為,準線方程為過作準線的垂線,垂足為,則設直線的傾斜角為,則當取得最小值時,最小,此時直線與拋物線相切設直線的方程為,代入得:,解得:或雙曲線的實軸長為,焦距為雙曲線的離心率故答案為:【點睛】本題考查雙曲線離心率的求解問題,涉及到拋物線定義和標準方程的應用、雙曲線定義的應用;關鍵是能夠確定當取得最小值時,直線與拋物線相切,進而根據拋物線切線方程的求解方法求得點坐標.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)2【解析】

(1)首先利用對圓C的參數方程(φ為參數)進行消參數運算,化為普通方程,再根據普通方程化極坐標方程的公式得到圓C的極坐標方程.(2)設,聯立直線與圓的極坐標方程,解得;設,聯立直線與直線的極坐標方程,解得,可得.【詳解】(1)圓C的普通方程為,又,所以圓C的極坐標方程為.(2)設,則由解得,,得;設,則由解得,,得;所以【點睛】本題考查圓的參數方程與普通方程的互化,考查圓的極坐標方程,考查極坐標方程的求解運算,考查了學生的計算能力以及轉化能力,屬于基礎題.18、(1)單調遞增區間為,單調遞減區間為;(2)【解析】

(1),令,解不等式即可;(2),令得,即,且的最小值為,令,結合即可解決.【詳解】(1),當時,,遞增,當時,,遞減.故的單調遞增區間為,單調遞減區間為.(2),,,設的根為,即有可得,,當時,,遞減,當時,,遞增.,所以,①當;②當時,設,遞增,,所以.綜上,.【點睛】本題考查了利用導數研究函數單調性以及函數恒成立問題,這里要強調一點,處理恒成立問題時,通常是構造函數,將問題轉化為函數的極值或最值來處理.19、(1)(2)證明見解析【解析】

(1)求導得到,解得答案.(2)變形得到,令函數,求導得到函數單調區間得到,,得到證明.【詳解】(1),,解得.(2)得,變形得,令函數,,令解得,當時,時.函數在上單調遞增,在上單調遞減,,而函數在區間上單調遞增,,,即,即,恒成立.【點睛】本題考查了根據切線求參數,證明不等式,意在考查學生的計算能力和轉化能力,綜合應用能力.20、(1);(2).【解析】

(1)將直線的參數方程化為直角坐標方程,由點到直線距離公式可求得圓心到直線距離,結合垂徑定理即可求得的長;(2)將的極坐標化為直角坐標,將直線方程與圓的方程聯立,求得直線與圓的兩個交點坐標,由中點坐標公式求得的坐標,再根據兩點間距離公式即可求得.【詳解】(1)直線的參數方程為(為參數),化為直角坐標方程為,即直線與曲線交于兩點.則圓心坐標為,半徑為1,則由點到直線距離公式可知,所以.(2)點的極坐標為,化為直角坐標可得,直線的方程與曲線的方程聯立,化簡可得,解得,所以兩點坐標為,所以,由兩點間距離公式可得.【點睛】本題考查了參數方程與普通方程轉化,極坐標與直角坐標的轉化,點到直線距離公式應用,兩點間距離公式的應用,直線與圓交點坐標求法,屬于基礎題.21、(1);(2)1.【解析】

(1)由正弦定理化簡已知等式可得sinAsinB=sinBcosA,求得tanA=,結合范圍A∈(0,π),可求A=.(2)利用三角形的面積公式可求bc=8,由余弦定理解得b+c=7,即可得解△ABC的周長的值.【詳解】(1)由題意,在中,因為,由正弦定理,可得sinAsinB=sinBcosA,又因為,可得sinB≠0,所以sinA=cosA,即:tanA=,因為A∈(0,π),所以A=;(2)由(1)可知A=,且a=5,又由△ABC的面積2=bcsinA=bc,解得bc=8,由余弦定理a

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論