




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省西安市周至縣重點達標名校2023-2024學年中考數學模試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知下列命題:①對頂角相等;②若a>b>0,則<;③對角線相等且互相垂直的四邊形是正方形;④拋物線y=x2﹣2x與坐標軸有3個不同交點;⑤邊長相等的多邊形內角都相等.從中任選一個命題是真命題的概率為()A. B. C. D.2.如圖,將△OAB繞O點逆時針旋轉60°得到△OCD,若OA=4,∠AOB=35°,則下列結論錯誤的是()A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=43.已知M,N,P,Q四點的位置如圖所示,下列結論中,正確的是()A.∠NOQ=42° B.∠NOP=132°C.∠PON比∠MOQ大 D.∠MOQ與∠MOP互補4.cos60°的值等于()A.1 B. C. D.5.如圖,A、B、C、D是⊙O上的四點,BD為⊙O的直徑,若四邊形ABCO是平行四邊形,則∠ADB的大小為()A.30° B.45° C.60° D.75°6.如圖,⊙O中,弦AB、CD相交于點P,若∠A=30°,∠APD=70°,則∠B等于()A.30° B.35° C.40° D.50°7.某種圓形合金板材的成本y(元)與它的面積(cm2)成正比,設半徑為xcm,當x=3時,y=18,那么當半徑為6cm時,成本為()A.18元 B.36元 C.54元 D.72元8.2018年春運,全國旅客發送量達29.8億人次,用科學記數法表示29.8億,正確的是()A.29.8×109 B.2.98×109 C.2.98×1010 D.0.298×10109.如圖,已知菱形ABCD,∠B=60°,AB=4,則以AC為邊長的正方形ACEF的周長為()A.16 B.12 C.24 D.1810.如圖,已知直線AB、CD被直線AC所截,AB∥CD,E是平面內任意一點(點E不在直線AB、CD、AC上),設∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度數可能是()A.①②③ B.①②④ C.①③④ D.①②③④二、填空題(共7小題,每小題3分,滿分21分)11.在平面直角坐標系中,點A,B的坐標分別為(m,7),(3m﹣1,7),若線段AB與直線y=﹣2x﹣1相交,則m的取值范圍為__.12.如圖,△ABC中,∠A=80°,∠B=40°,BC的垂直平分線交AB于點D,聯結DC.如果AD=2,BD=6,那么△ADC的周長為.13.科學家發現,距離地球2540000光年之遙的仙女星系正在向銀河系靠近.其中2540000用科學記數法表示為_____.14.對甲、乙兩臺機床生產的零件進行抽樣測量,其平均數、方差計算結果如下:機床甲:=10,=0.02;機床乙:=10,=0.06,由此可知:________(填甲或乙)機床性能好.15.在Rt△ABC中,∠C=90°,sinA=,那么cosA=________.16.如圖,△ABC中,D、E分別在AB、AC上,DE∥BC,AD:AB=1:3,則△ADE與△ABC的面積之比為______.17.如圖,在3×3的方格中,A、B、C、D、E、F分別位于格點上,從C、D、E、F四點中任取一點,與點A、B為頂點作三角形,則所作三角形為等腰三角形的概率是__.三、解答題(共7小題,滿分69分)18.(10分)全民健身運動已成為一種時尚,為了解揭陽市居民健身運動的情況,某健身館的工作人員開展了一項問卷調查,問卷內容包括五個項目:A:健身房運動;B:跳廣場舞;C:參加暴走團;D:散步;E:不運動.以下是根據調查結果繪制的統計圖表的一部分,運動形式ABCDE人數請你根據以上信息,回答下列問題:接受問卷調查的共有人,圖表中的,.統計圖中,類所對應的扇形的圓心角的度數是度.揭陽市環島路是市民喜愛的運動場所之一,每天都有“暴走團”活動,若某社區約有人,請你估計一下該社區參加環島路“暴走團”的人數.19.(5分)已知拋物線y=a(x-1)2+3(a≠0)與y軸交于點A(0,2),頂點為B,且對稱軸l1與x軸交于點M(1)求a的值,并寫出點B的坐標;(2)將此拋物線向右平移所得新的拋物線與原拋物線交于點C,且新拋物線的對稱軸l2與x軸交于點N,過點C做DE∥x軸,分別交l1、l2于點D、E,若四邊形MDEN是正方形,求平移后拋物線的解析式.20.(8分)先化簡,然后從﹣<x<的范圍內選取一個合適的整數作為x的值代入求值.21.(10分)經過校園某路口的行人,可能左轉,也可能直行或右轉.假設這三種可能性相同,現有小明和小亮兩人經過該路口,請用列表法或畫樹狀圖法,求兩人之中至少有一人直行的概率.22.(10分)如圖,經過原點的拋物線y=﹣x2+2mx(m>0)與x軸的另一個交點為A,過點P(1,m)作直線PA⊥x軸于點M,交拋物線于點B.記點B關于拋物線對稱軸的對稱點為C(點B、C不重合),連接CB、CP.(I)當m=3時,求點A的坐標及BC的長;(II)當m>1時,連接CA,若CA⊥CP,求m的值;(III)過點P作PE⊥PC,且PE=PC,當點E落在坐標軸上時,求m的值,并確定相對應的點E的坐標.23.(12分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.求證:△AEF≌△DEB;證明四邊形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD的面積.24.(14分)解下列不等式組:
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】∵①對頂角相等,故此選項正確;②若a>b>0,則<,故此選項正確;③對角線相等且互相垂直平分的四邊形是正方形,故此選項錯誤;④拋物線y=x2﹣2x與坐標軸有2個不同交點,故此選項錯誤;⑤邊長相等的多邊形內角不一定都相等,故此選項錯誤;∴從中任選一個命題是真命題的概率為:.故選:B.2、D【解析】
由△OAB繞O點逆時針旋轉60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,據此可判斷C;由△AOC、△BOD是等邊三角形可判斷A選項;由∠AOB=35°,∠AOC=60°可判斷B選項,據此可得答案.【詳解】解:∵△OAB繞O點逆時針旋轉60°得到△OCD,
∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C選項正確;
則△AOC、△BOD是等邊三角形,∴∠BDO=60°,故A選項正確;
∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B選項正確.
故選D.【點睛】本題考查旋轉的性質,解題的關鍵是掌握旋轉的性質:①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等及等邊三角形的判定和性質.3、C【解析】試題分析:如圖所示:∠NOQ=138°,選項A錯誤;∠NOP=48°,選項B錯誤;如圖可得∠PON=48°,∠MOQ=42°,所以∠PON比∠MOQ大,選項C正確;由以上可得,∠MOQ與∠MOP不互補,選項D錯誤.故答案選C.考點:角的度量.4、A【解析】
根據特殊角的三角函數值直接得出結果.【詳解】解:cos60°=故選A.【點睛】識記特殊角的三角函數值是解題的關鍵.5、A【解析】
解:∵四邊形ABCO是平行四邊形,且OA=OC,∴四邊形ABCO是菱形,∴AB=OA=OB,∴△OAB是等邊三角形,∴∠AOB=60°,∵BD是⊙O的直徑,∴點B、D、O在同一直線上,∴∠ADB=∠AOB=30°故選A.6、C【解析】分析:欲求∠B的度數,需求出同弧所對的圓周角∠C的度數;△APC中,已知了∠A及外角∠APD的度數,即可由三角形的外角性質求出∠C的度數,由此得解.解答:解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD-∠A=40°;∴∠B=∠C=40°;故選C.7、D【解析】
設y與x之間的函數關系式為y=kπx2,由待定系數法就可以求出解析式,再求出x=6時y的值即可得.【詳解】解:根據題意設y=kπx2,∵當x=3時,y=18,∴18=kπ?9,則k=,∴y=kπx2=?π?x2=2x2,當x=6時,y=2×36=72,故選:D.【點睛】本題考查了二次函數的應用,解答時求出函數的解析式是關鍵.8、B【解析】
根據科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,且為這個數的整數位數減1,由此即可解答.【詳解】29.8億用科學記數法表示為:29.8億=2980000000=2.98×1.故選B.【點睛】本題考查了科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.9、A【解析】
由菱形ABCD,∠B=60°,易證得△ABC是等邊三角形,繼而可得AC=AB=4,則可求得以AC為邊長的正方形ACEF的周長.【詳解】解:∵四邊形ABCD是菱形,∴AB=BC.∵∠B=60°,∴△ABC是等邊三角形,∴AC=AB=BC=4,∴以AC為邊長的正方形ACEF的周長為:4AC=1.故選A.【點睛】本題考查了菱形的性質、正方形的性質以及等邊三角形的判定與性質.此題難度不大,注意掌握數形結合思想的應用.10、D【解析】
根據E點有4中情況,分四種情況討論分別畫出圖形,根據平行線的性質與三角形外角定理求解.【詳解】E點有4中情況,分四種情況討論如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α過點E2作AB的平行線,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度數可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故選D.【點睛】此題主要考查平行線的性質與外角定理,解題的關鍵是根據題意分情況討論.二、填空題(共7小題,每小題3分,滿分21分)11、﹣4≤m≤﹣1【解析】
先求出直線y=7與直線y=﹣2x﹣1的交點為(﹣4,7),再分類討論:當點B在點A的右側,則m≤﹣4≤3m﹣1,當點B在點A的左側,則3m﹣1≤﹣4≤m,然后分別解關于m的不等式組即可.【詳解】解:當y=7時,﹣2x﹣1=7,解得x=﹣4,所以直線y=7與直線y=﹣2x﹣1的交點為(﹣4,7),當點B在點A的右側,則m≤﹣4≤3m﹣1,無解;當點B在點A的左側,則3m﹣1≤﹣4≤m,解得﹣4≤m≤﹣1,所以m的取值范圍為﹣4≤m≤﹣1,故答案為﹣4≤m≤﹣1.【點睛】本題考查了一次函數圖象上點的坐標特征,根據直線y=﹣2x﹣1與線段AB有公共點找出關于m的一元一次不等式組是解題的關鍵.12、1.【解析】試題分析:由BC的垂直平分線交AB于點D,可得CD=BD=6,又由等邊對等角,可求得∠BCD的度數,繼而求得∠ADC的度數,則可判定△ACD是等腰三角形,繼而求得答案.試題解析:∵BC的垂直平分線交AB于點D,∴CD=BD=6,∴∠DCB=∠B=40°,∴∠ADC=∠B+∠BCD=80°,∴∠ADC=∠A=80°,∴AC=CD=6,∴△ADC的周長為:AD+DC+AC=2+6+6=1.考點:1.線段垂直平分線的性質;2.等腰三角形的判定與性質.13、2.54×1【解析】【分析】科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】2540000的小數點向左移動6位得到2.54,所以,2540000用科學記數法可表示為:2.54×1,故答案為2.54×1.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.14、甲.【解析】試題分析:根據方差的意義可知,方差越小,穩定性越好,由此即可求出答案.試題解析:因為甲的方差小于乙的方差,甲的穩定性好,所以甲機床的性能好.故答案為甲.考點:1.方差;2.算術平均數.15、【解析】∵Rt△ABC中,∠C=90°,∴sinA=,∵sinA=,∴c=2a,∴b=,∴cosA=,故答案為.16、1:1.【解析】試題分析:由DE∥BC,可得△ADE∽△ABC,根據相似三角形的面積之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考點:相似三角形的性質.17、.【解析】
解:根據從C、D、E、F四個點中任意取一點,一共有4種可能,選取D、C、F時,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案為.【點睛】本題考查概率的計算及等腰三角形的判定,熟記等要三角形的性質及判定方法和概率的計算公式是本題的解題關鍵.三、解答題(共7小題,滿分69分)18、(1)150、45、36;(2)28.8°;(3)450人【解析】
(1)由B項目的人數及其百分比求得總人數,根據各項目人數之和等于總人數求得m=45,再用D項目人數除以總人數可得n的值;
(2)360°乘以A項目人數占總人數的比例可得;
(3)利用總人數乘以樣本中C人數所占比例可得.【詳解】解:(1)接受問卷調查的共有30÷20%=150人,m=150-(12+30+54+9)=45,∴n=36,
故答案為:150、45、36;(2)A類所對應的扇形圓心角的度數為故答案為:28.8°;(3)(人)答:估計該社區參加碧沙崗“暴走團”的大約有450人【點睛】本題考查的是統計表和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.扇形統計圖直接反映部分占總體的百分比大小.19、(1)a=-1,B坐標為(1,3);(2)y=-(x-3)2+3,或y=-(x-7)2+3.【解析】
(1)利用待定系數法即可解決問題;(2)如圖,設拋物線向右平移后的解析式為y=-(x-m)2+3,再用m表示點C的坐標,需分兩種情況討論,用待定系數法即可解決問題.【詳解】(1)把點A(0,2)代入拋物線的解析式可得,2=a+3,∴a=-1,∴拋物線的解析式為y=-(x-1)2+3,頂點為(1,3)(2)如圖,設拋物線向右平移后的解析式為y=-(x-m)2+3,由解得x=∴點C的橫坐標為∵MN=m-1,四邊形MDEN是正方形,∴C(,m-1)把C點代入y=-(x-1)2+3,得m-1=-+3,解得m=3或-5(舍去)∴平移后的解析式為y=-(x-3)2+3,當點C在x軸的下方時,C(,1-m)把C點代入y=-(x-1)2+3,得1-m=-+3,解得m=7或-1(舍去)∴平移后的解析式為y=-(x-7)2+3綜上:平移后的解析式為y=-(x-3)2+3,或y=-(x-7)2+3.【點睛】此題主要考查二次函數的綜合問題,解題的關鍵是熟知正方形的性質與函數結合進行求解.20、【解析】
根據分式的減法和除法可以化簡題目中的式子,然后從﹣<x<的范圍內選取一個使得原分式有意義的整數作為x的值代入即可解答本題.【詳解】解:÷(﹣x+1)====,當x=﹣2時,原式=.【點睛】本題考查分式的化簡求值、估算無理數的大小,解答本題的關鍵是明確分式化簡求值的方法.21、兩人之中至少有一人直行的概率為.【解析】【分析】畫樹狀圖展示所有9種等可能的結果數,找出“至少有一人直行”的結果數,然后根據概率公式求解.【詳解】畫樹狀圖為:共有9種等可能的結果數,其中兩人之中至少有一人直行的結果數為5,所以兩人之中至少有一人直行的概率為.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.概率=所求情況數與總情況數之比.22、(I)4;(II)(III)(2,0)或(0,4)【解析】
(I)當m=3時,拋物線解析式為y=-x2+6x,解方程-x2+6x=0得A(6,0),利用對稱性得到C(5,5),從而得到BC的長;(II)解方程-x2+2mx=0得A(2m,0),利用對稱性得到C(2m-1,2m-1),再根據勾股定理和兩點間的距離公式得到(2m-2)2+(m-1)2+12+(2m-1)2=(2m-1)2+m2,然后解方程即可;(III)如圖,利用△PME≌△CBP得到PM=BC=2m-2,ME=BP=m-1,則根據P點坐標得到2m-2=m,解得m=2,再計算出ME=1得到此時E點坐標;作PH⊥y軸于H,如圖,利用△PHE′≌△PBC得到PH=PB=m-1,HE′=BC=2m-2,利用P(1,m)得到m-1=1,解得m=2,然后計算出HE′得到E′點坐標.【詳解】解:(I)當m=3時,拋物線解析式為y=﹣x2+6x,當y=0時,﹣x2+6x=0,解得x1=0,x2=6,則A(6,0),拋物線的對稱軸為直線x=3,∵P(1,3),∴B(1,5),∵點B關于拋物線對稱軸的對稱點為C∴C(5,5),∴BC=5﹣1=4;(II)當y=0時,﹣x2+2mx=0,解得x1=0,x2=2m,則A(2m,0),B(1,2m﹣1),∵點B關于拋物線對稱軸的對稱點為C,而拋物線的對稱軸為直線x=m,∴C(2m﹣1,2m﹣1),∵PC⊥PA,∴PC2+AC2=PA2,∴(2m﹣2)2+(m﹣1)2+12+(2m﹣1)2=(2m﹣1)2+m2,整理得2m2﹣5m+3=0,解得m1=1,m2=,即m的值為;(III)如圖,∵PE⊥PC,PE=PC,∴△PME≌△CBP,∴PM=BC=2m﹣2,ME=BP=2m﹣1﹣m=m﹣1,而P(1,m)∴2m﹣2=m,解得m=2,∴ME=m﹣1=1,∴E(2,0);作PH⊥y軸于H,如圖,易得△PHE′≌△PBC,∴PH=PB=m﹣1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司員工手機管理制度
- 公交服務衛生管理制度
- 場所安全監督管理制度
- 培訓店家學員管理制度
- 公司關鍵人員管理制度
- 員工餐廳賬務管理制度
- 廠區安全行車管理制度
- 初中錄播教室管理制度
- 業務考核題庫及答案
- 教育與科技的融合-農商銀行的轉型路徑
- 廣東省廣州市2025年中考地理模擬測試卷(含答案)
- 食堂應急預案管理制度
- 中級財務會計-中級財務會計復習學習資料
- 基于《山海經》神祇形象的青少年解壓文具設計研究
- 安全生產法律法規基本知識
- 2025年新高考歷史預測模擬試卷黑吉遼蒙卷(含答案解析)
- 2025高考語文名校作文題立意與例文參考11篇
- 2025年高三語言復習【文字運用題】專項練習卷附答案解析
- 申報企業高級工程師職稱述職報告
- 5.2《稻》教案-【中職專用】高二語文同步教學(高教版2023·拓展模塊下冊)
- DBJ50-T -212-2015 機制排煙氣道系統應用技術規程
評論
0/150
提交評論