




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省揚州市紅橋高級中學2023-2024學年高三下學期聯考數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.復數的共軛復數為()A. B. C. D.2.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是由一個棱柱挖去一個棱錐后的幾何體的三視圖,則該幾何體的體積為A.72 B.64 C.48 D.323.某市氣象部門根據2018年各月的每天最高氣溫平均數據,繪制如下折線圖,那么,下列敘述錯誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢4.如圖,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E為AD的中點,若,則λ+μ的值為()A. B. C. D.5.已知為圓的一條直徑,點的坐標滿足不等式組則的取值范圍為()A. B.C. D.6.設,則()A. B. C. D.7.《九章算術》中將底面是直角三角形的直三棱柱稱為“塹堵”.某“塹堵”的三視圖如圖,則它的外接球的表面積為()A.4π B.8π C. D.8.如圖所示的莖葉圖為高三某班名學生的化學考試成績,算法框圖中輸入的,,,,為莖葉圖中的學生成績,則輸出的,分別是()A., B.,C., D.,9.關于圓周率,數學發展史上出現過許多很有創意的求法,如著名的蒲豐實驗和查理斯實驗.受其啟發,某同學通過下面的隨機模擬方法來估計的值:先用計算機產生個數對,其中,都是區間上的均勻隨機數,再統計,能與構成銳角三角形三邊長的數對的個數﹔最后根據統計數來估計的值.若,則的估計值為()A. B. C. D.10.已知復數滿足:(為虛數單位),則()A. B. C. D.11.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.812.若,則的虛部是A.3 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知△ABC得三邊長成公比為2的等比數列,則其最大角的余弦值為_____.14.已知實數x,y滿足(2x-y)2+4y15.如圖所示,直角坐標系中網格小正方形的邊長為1,若向量、、滿足,則實數的值為_______.16.已知函數的最大值為3,的圖象與y軸的交點坐標為,其相鄰兩條對稱軸間的距離為2,則三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,直角梯形中,,,,四邊形為矩形,.(1)求證:平面平面;(2)在線段上是否存在點,使得直線與平面所成角的正弦值為,若存在,求出線段的長,若不存在,請說明理由.18.(12分)在中,角,,的對邊分別為,,,已知.(1)若,,成等差數列,求的值;(2)是否存在滿足為直角?若存在,求的值;若不存在,請說明理由.19.(12分)在平面直角坐標系中,為直線上動點,過點作拋物線:的兩條切線,,切點分別為,,為的中點.(1)證明:軸;(2)直線是否恒過定點?若是,求出這個定點的坐標;若不是,請說明理由.20.(12分)設函數.(1)當時,求不等式的解集;(2)若恒成立,求的取值范圍.21.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F分別是棱AB,PC的中點.求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.22.(10分)已知拋物線:()的焦點到點的距離為.(1)求拋物線的方程;(2)過點作拋物線的兩條切線,切點分別為,,點、分別在第一和第二象限內,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
直接相乘,得,由共軛復數的性質即可得結果【詳解】∵∴其共軛復數為.故選:D【點睛】熟悉復數的四則運算以及共軛復數的性質.2、B【解析】
由三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,利用體積公式,即可求解。【詳解】由題意,幾何體的三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,所以幾何體的體積為,故選B。【點睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據三視圖的規則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數量關系,利用相應公式求解。3、D【解析】
根據折線圖依次判斷每個選項得到答案.【詳解】由繪制出的折線圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關,故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個,故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯誤.故選:D.【點睛】本題考查了折線圖,意在考查學生的理解能力.4、B【解析】
建立平面直角坐標系,用坐標表示,利用,列出方程組求解即可.【詳解】建立如圖所示的平面直角坐標系,則D(0,0).不妨設AB=1,則CD=AD=2,所以C(2,0),A(0,2),B(1,2),E(0,1),∴(-2,2)=λ(-2,1)+μ(1,2),解得則.故選:B【點睛】本題主要考查了由平面向量線性運算的結果求參數,屬于中檔題.5、D【解析】
首先將轉化為,只需求出的取值范圍即可,而表示可行域內的點與圓心距離,數形結合即可得到答案.【詳解】作出可行域如圖所示設圓心為,則,過作直線的垂線,垂足為B,顯然,又易得,所以,,故.故選:D.【點睛】本題考查與線性規劃相關的取值范圍問題,涉及到向量的線性運算、數量積、點到直線的距離等知識,考查學生轉化與劃歸的思想,是一道中檔題.6、C【解析】試題分析:,.故C正確.考點:復合函數求值.7、B【解析】
由三視圖判斷出原圖,將幾何體補形為長方體,由此計算出幾何體外接球的直徑,進而求得球的表面積.【詳解】根據題意和三視圖知幾何體是一個底面為直角三角形的直三棱柱,底面直角三角形的斜邊為2,側棱長為2且與底面垂直,因為直三棱柱可以復原成一個長方體,該長方體外接球就是該三棱柱的外接球,長方體對角線就是外接球直徑,則,那么.故選:B【點睛】本小題主要考查三視圖還原原圖,考查幾何體外接球的有關計算,屬于基礎題.8、B【解析】
試題分析:由程序框圖可知,框圖統計的是成績不小于80和成績不小于60且小于80的人數,由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點:程序框圖、莖葉圖.9、B【解析】
先利用幾何概型的概率計算公式算出,能與構成銳角三角形三邊長的概率,然后再利用隨機模擬方法得到,能與構成銳角三角形三邊長的概率,二者概率相等即可估計出.【詳解】因為,都是區間上的均勻隨機數,所以有,,若,能與構成銳角三角形三邊長,則,由幾何概型的概率計算公式知,所以.故選:B.【點睛】本題考查幾何概型的概率計算公式及運用隨機數模擬法估計概率,考查學生的基本計算能力,是一個中檔題.10、A【解析】
利用復數的乘法、除法運算求出,再根據共軛復數的概念即可求解.【詳解】由,則,所以.故選:A【點睛】本題考查了復數的四則運算、共軛復數的概念,屬于基礎題.11、A【解析】
由三視圖還原出原幾何體,得出幾何體的結構特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.【點睛】本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關鍵.12、B【解析】
因為,所以的虛部是.故選B.二、填空題:本題共4小題,每小題5分,共20分。13、-【解析】試題分析:根據題意設三角形的三邊長分別設為為a,2a,2a,∵2a>2a>a,∴2a所對的角為最大角,設為θ,則根據余弦定理得考點:余弦定理及等比數列的定義.14、2【解析】
直接利用柯西不等式得到答案.【詳解】根據柯西不等式:2x-y2+4y當2x-y=2y,即x=328故答案為:2.【點睛】本題考查了柯西不等式求最值,也可以利用均值不等式,三角換元求得答案.15、【解析】
根據圖示分析出、、的坐標表示,然后根據坐標形式下向量的數量積為零計算出的取值.【詳解】由圖可知:,所以,又因為,所以,所以.故答案為:.【點睛】本題考查向量的坐標表示以及坐標形式下向量的數量積運算,難度較易.已知,若,則有.16、【解析】,由題意,得,解得,則的周期為4,且,所以.考點:三角函數的圖像與性質.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)存在,長【解析】
(1)先證面,又因為面,所以平面平面.(2)根據題意建立空間直角坐標系.列出各點的坐標表示,設,則可得出向量,求出平面的法向量為,利用直線與平面所成角的正弦公式列方程求出或,從而求出線段的長.【詳解】解:(1)證明:因為四邊形為矩形,∴.∵∴∴∴面∴面又∵面∴平面平面(2)取為原點,所在直線為軸,所在直線為軸建立空間直角坐標系.如圖所示:則,,,,,設,;∴,,設平面的法向量為,∴,不防設.∴,化簡得,解得或;當時,,∴;當時,,∴;綜上存在這樣的點,線段的長.【點睛】本題考查平面與平面垂直的判定定理的應用,考查利用線面所成角求參數問題,是幾何綜合題,考查空間想象力以及計算能力.18、見解析【解析】
(1)因為,,成等差數列,所以,由余弦定理可得,因為,所以,即,所以.(2)若B為直角,則,,由及正弦定理可得,所以,即,上式兩邊同時平方,可得,所以(*).又,所以,,所以,與(*)矛盾,所以不存在滿足為直角.19、(1)見解析(2)直線過定點.【解析】
(1)設出兩點的坐標,利用導數求得切線的方程,設出點坐標并代入切線的方程,同理將點坐標代入切線的方程,利用韋達定理求得線段中點的橫坐標,由此判斷出軸.(2)求得點的縱坐標,由此求得點坐標,求得直線的斜率,由此求得直線的方程,化簡后可得直線過定點.【詳解】(1)設切點,,,∴切線的斜率為,切線:,設,則有,化簡得,同理可的.∴,是方程的兩根,∴,,,∴軸.(2)∵,∴.∵,∴直線:,即,∴直線過定點.【點睛】本小題主要考查直線和拋物線的位置關系,考查直線過定點問題,考查化歸與轉化的數學思想方法,屬于中檔題.20、(1);(2).【解析】
分析:(1)先根據絕對值幾何意義將不等式化為三個不等式組,分別求解,最后求并集,(2)先化簡不等式為,再根據絕對值三角不等式得最小值,最后解不等式得的取值范圍.詳解:(1)當時,可得的解集為.(2)等價于.而,且當時等號成立.故等價于.由可得或,所以的取值范圍是.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數形結合思想,將絕對值不等式與函數以及不等式恒成立交匯、滲透,解題時強化函數、數形結合與轉化化歸思想方法的靈活應用,這是命題的新動向.21、(1)見解析;(2)見解析【解析】
(1)取的中點構造平行四邊形,得到,從而證出平面;(2)先證平面,再利用面面垂直的判定定理得到平面平面.【詳解】證明:(1)如圖,取的中點,連接,,是棱的中點,底面是矩形,,且,又,分別是棱,的中點,,且,,且,四邊形為平行四邊形,,又平面,平面,平面;(2),點是棱的中點,,又,,平面,平面,,底面是矩形,,平面,平面,且,平面,又平面,,,,又平面,平面,且,平面,又平面,平面平面.【點睛】本題主要考查線面平行的判定,面面垂直的判定,首選判定定理,是中檔題.22、(1)(2)【解析】
(1)因為,可得,即可求得答案;(2)分別設、的斜率為和,切點,,可得過點的拋物線的切線方程為:,聯立直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年電梯安裝維修工(八十一級)考試試卷:電梯維修職業競爭力分析
- 2025年德語DSH考試全真模擬試卷:寫作實戰與點評分析
- 2025年理財規劃師(金融分析師級)考試試卷:財務報表分析實戰解析與技巧精講
- 輻射防護管理試題
- 免疫治療在自身免疫性皮膚病中的新型藥物研發動態
- 2025年黃斑病診療試題
- 2025年軋鋼導衛裝置項目提案報告模板
- 工業領域CCS技術應用案例投資風險與收益評估
- 數字貨幣與貨幣政策傳導:2025年新機制與新策略研究
- 廢石處理方案
- GB/T 3608-2008高處作業分級
- GB/T 19096-2003技術制圖圖樣畫法未定義形狀邊的術語和注法
- GB/T 12786-2006自動化內燃機電站通用技術條件
- 2023年鄭州大學嵩山地質實習
- 項目安全體系圖
- (擋土墻)砌石工程施工記錄
- 房地產租賃價值估價報告
- 材料出入庫表格范本
- 妊娠期急性脂肪肝臨床管理指南(2022版)解讀
- DB14∕T 2442-2022 政務數據分類分級要求
- 呼倫貝爾農業無人機項目可行性研究報告(范文)
評論
0/150
提交評論