上海市閔行七校2024年高三第三次測評數學試卷含解析_第1頁
上海市閔行七校2024年高三第三次測評數學試卷含解析_第2頁
上海市閔行七校2024年高三第三次測評數學試卷含解析_第3頁
上海市閔行七校2024年高三第三次測評數學試卷含解析_第4頁
上海市閔行七校2024年高三第三次測評數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

上海市閔行七校2024年高三第三次測評數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,則()A. B. C. D.22.設a,b∈(0,1)∪(1,+∞),則"a=b"是"logA.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件3.設是兩條不同的直線,是兩個不同的平面,下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則4.圓錐底面半徑為,高為,是一條母線,點是底面圓周上一點,則點到所在直線的距離的最大值是()A. B. C. D.5.設雙曲線(,)的一條漸近線與拋物線有且只有一個公共點,且橢圓的焦距為2,則雙曲線的標準方程為()A. B. C. D.6.已知,是橢圓的左、右焦點,過的直線交橢圓于兩點.若依次構成等差數列,且,則橢圓的離心率為A. B. C. D.7.若函數,在區間上任取三個實數,,均存在以,,為邊長的三角形,則實數的取值范圍是()A. B. C. D.8.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.9.函數在上的圖象大致為()A. B.C. D.10.在三角形中,,,求()A. B. C. D.11.為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點,若,且,則雙曲線的離心率為()A. B. C. D.12.在中,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知不等式的解集不是空集,則實數的取值范圍是;若不等式對任意實數恒成立,則實數的取值范圍是___14.已知雙曲線()的左右焦點分別為,為坐標原點,點為雙曲線右支上一點,若,,則雙曲線的離心率的取值范圍為_____.15.在正奇數非減數列中,每個正奇數出現次.已知存在整數、、,對所有的整數滿足,其中表示不超過的最大整數.則等于______.16.雙曲線的離心率為_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數,其中.(Ⅰ)當為偶函數時,求函數的極值;(Ⅱ)若函數在區間上有兩個零點,求的取值范圍.18.(12分)已知函數.(1)若在上單調遞增,求實數的取值范圍;(2)若,對,恒有成立,求實數的最小值.19.(12分)如圖,已知平面與直線均垂直于所在平面,且.(1)求證:平面;(2)若,求與平面所成角的正弦值.20.(12分)已知函數.(1)求不等式的解集;(2)設的最小值為,正數,滿足,證明:.21.(12分)已知圓M:及定點,點A是圓M上的動點,點B在上,點G在上,且滿足,,點G的軌跡為曲線C.(1)求曲線C的方程;(2)設斜率為k的動直線l與曲線C有且只有一個公共點,與直線和分別交于P、Q兩點.當時,求(O為坐標原點)面積的取值范圍.22.(10分)如圖所示,在四棱錐中,底面是邊長為2的正方形,側面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)(文科)求三棱錐的體積;(理科)求二面角的正切值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

結合求得的值,由此化簡所求表達式,求得表達式的值.【詳解】由,以及,解得..故選:B【點睛】本小題主要考查利用同角三角函數的基本關系式化簡求值,考查二倍角公式,屬于中檔題.2、A【解析】

根據題意得到充分性,驗證a=2,b=1【詳解】a,b∈0,1∪1,+∞,當"a=b當logab=log故選:A.【點睛】本題考查了充分不必要條件,意在考查學生的計算能力和推斷能力.3、C【解析】

在A中,與相交或平行;在B中,或;在C中,由線面垂直的判定定理得;在D中,與平行或.【詳解】設是兩條不同的直線,是兩個不同的平面,則:在A中,若,,則與相交或平行,故A錯誤;在B中,若,,則或,故B錯誤;在C中,若,,則由線面垂直的判定定理得,故C正確;在D中,若,,則與平行或,故D錯誤.故選C.【點睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關系等基礎知識,是中檔題.4、C【解析】分析:作出圖形,判斷軸截面的三角形的形狀,然后轉化求解的位置,推出結果即可.詳解:圓錐底面半徑為,高為2,是一條母線,點是底面圓周上一點,在底面的射影為;,,過的軸截面如圖:,過作于,則,在底面圓周,選擇,使得,則到的距離的最大值為3,故選:C點睛:本題考查空間點線面距離的求法,考查空間想象能力以及計算能力,解題的關鍵是作出軸截面圖形,屬中檔題.5、B【解析】

設雙曲線的漸近線方程為,與拋物線方程聯立,利用,求出的值,得到的值,求出關系,進而判斷大小,結合橢圓的焦距為2,即可求出結論.【詳解】設雙曲線的漸近線方程為,代入拋物線方程得,依題意,,橢圓的焦距,,雙曲線的標準方程為.故選:B.【點睛】本題考查橢圓和雙曲線的標準方程、雙曲線的簡單幾何性質,要注意雙曲線焦點位置,屬于中檔題.6、D【解析】

如圖所示,設依次構成等差數列,其公差為.根據橢圓定義得,又,則,解得,.所以,,,.在和中,由余弦定理得,整理解得.故選D.7、D【解析】

利用導數求得在區間上的最大值和最小,根據三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域為,,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區間上的最大值為.要使在區間上任取三個實數,,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當、時,成立,即,且,解得.所以的取值范圍是.故選:D【點睛】本小題主要考查利用導數研究函數的最值,考查恒成立問題的求解,屬于中檔題.8、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.9、A【解析】

首先判斷函數的奇偶性,再根據特殊值即可利用排除法解得;【詳解】解:依題意,,故函數為偶函數,圖象關于軸對稱,排除C;而,排除B;,排除D.故選:.【點睛】本題考查函數圖象的識別,函數的奇偶性的應用,屬于基礎題.10、A【解析】

利用正弦定理邊角互化思想結合余弦定理可求得角的值,再利用正弦定理可求得的值.【詳解】,由正弦定理得,整理得,由余弦定理得,,.由正弦定理得.故選:A.【點睛】本題考查利用正弦定理求值,涉及正弦定理邊角互化思想以及余弦定理的應用,考查計算能力,屬于中等題.11、D【解析】

過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設該雙曲線的右焦點為,連接.,.,,,為的中點,,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點睛】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.12、A【解析】

先根據得到為的重心,從而,故可得,利用可得,故可計算的值.【詳解】因為所以為的重心,所以,所以,所以,因為,所以,故選A.【點睛】對于,一般地,如果為的重心,那么,反之,如果為平面上一點,且滿足,那么為的重心.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用絕對值的幾何意義,確定出的最小值,然后根據題意即可得到的取值范圍化簡不等式,求出的最大值,然后求出結果【詳解】的最小值為,則要使不等式的解集不是空集,則有化簡不等式有,即而當時滿足題意,解得或所以答案為【點睛】本題主要考查的是函數恒成立的問題和絕對值不等式,要注意到絕對值的幾何意義,數形結合來解答本題,注意去絕對值時的分類討論化簡14、【解析】

法一:根據直角三角形的性質和勾股定理得,,,又由雙曲線的定義得,將離心率表示成關于的式子,再令,則,令對函數求導研究函數在上單調性,可求得離心率的范圍.法二:令,,,,,根據直角三角形的性質和勾股定理得,將離心率表示成關于角的三角函數,根據三角函數的恒等變化轉化為關于的函數,可求得離心率的范圍.【詳解】法一:,,,,,,設,則,令,所以時,,在上單調遞增,,,.法二:,,令,,,,,,,,,.故答案為:.【點睛】本題考查求雙曲線的離心率的范圍的問題,關鍵在于將已知條件轉化為與雙曲線的有關,從而將離心率表示關于某個量的函數,屬于中檔題.15、2【解析】

將已知數列分組為(1),,共個組.設在第組,,則有,即.注意到,解得.所以,.因此,.故.16、2【解析】三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ)極小值,極大值;(Ⅱ)或【解析】

(Ⅰ)根據偶函數定義列方程,解得.再求導數,根據導函數零點列表分析導函數符號變化規律,即得極值,(Ⅱ)先分離變量,轉化研究函數,,利用導數研究單調性與圖象,最后根據圖象確定滿足條件的的取值范圍.【詳解】(Ⅰ)由函數是偶函數,得,即對于任意實數都成立,所以.此時,則.由,解得.當x變化時,與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調遞減,在上單調遞增.所以有極小值,有極大值.(Ⅱ)由,得.所以“在區間上有兩個零點”等價于“直線與曲線,有且只有兩個公共點”.對函數求導,得.由,解得,.當x變化時,與的變化情況如下表所示:00↘極小值↗極大值↘所以在,上單調遞減,在上單調遞增.又因為,,,,所以當或時,直線與曲線,有且只有兩個公共點.即當或時,函數在區間上有兩個零點.【點睛】利用函數零點的情況求參數值或取值范圍的方法(1)利用零點存在的判定定理構建不等式求解.(2)分離參數后轉化為函數的值域(最值)問題求解.(3)轉化為兩熟悉的函數圖象的上、下關系問題,從而構建不等式求解.18、(1)(2)【解析】

(1)求得,根據已知條件得到在恒成立,由此得到在恒成立,利用分離常數法求得的取值范圍.(2)構造函數設,利用求二階導數的方法,結合恒成立,求得的取值范圍,由此求得的最小值.【詳解】(1)因為在上單調遞增,所以在恒成立,即在恒成立,當時,上式成立,當,有,需,而,,,,故綜上,實數的取值范圍是(2)設,,則,令,,在單調遞增,也就是在單調遞增,所以.當即時,,不符合;當即時,,符合當即時,根據零點存在定理,,使,有時,,在單調遞減,時,,在單調遞增,成立,故只需即可,有,得,符合綜上得,,實數的最小值為【點睛】本小題主要考查利用導數研究函數的單調性,考查利用導數研究不等式恒成立問題,考查化歸與轉化的數學思想方法,考查分類討論的數學思想方法,屬于難題.19、(1)見解析;(2)【解析】

(Ⅰ)證明:過點作于點,∵平面⊥平面,∴平面又∵⊥平面∴∥,又∵平面∴∥平面(Ⅱ)∵平面∴,又∵∴∴∴點是的中點,連結,則∴平面∴∥,∴四邊形是矩形設,得:,又∵,∴,從而,過作于點,則∴是與平面所成角∴,∴與平面所成角的正弦值為考點:面面垂直的性質定理;線面平行的判定定理;線面垂直的性質定理;直線與平面所成的角.點評:本題主要考查了線面平行的證明和直線與平面所成的角,屬立體幾何中的??碱}型,較難.本題也可以用向量法來做:用向量法解題的關鍵是;首先正確的建立空間直角坐標系,正確求解平面的一個法向量.注意計算要仔細、認真.≌20、(1)(2)證明見解析【解析】

(1)將表示為分段函數的形式,由此求得不等式的解集.(2)利用絕對值三角不等式求得的最小值,利用分析法,結合基本不等式,證得不等式成立.【詳解】(1),不等式,即或或,即有或或,所以所求不等式的解集為.(2),,因為,,所以要證,只需證,即證,因為,所以只要證,即證,即證,因為,所以只需證,因為,所以成立,所以.【點睛】本小題主要考查絕對值不等式的解法,考查分析法證明不等式,考查基本不等式的運用,屬于中檔題.21、(1);(2).【解析】

(1)根據題意得到GB是線段的中垂線,從而為定值,根據橢圓定義可知點G的軌跡是以M,N為焦點的橢圓,即可求出曲線C的方程;(2)聯立直線方程和橢圓方程,表示處的面積代入韋達定理化簡即可求范圍.【詳解】(1)為的中點,且是線段的中垂線,,又,∴點G的軌跡是以M,N為焦點的橢圓,設橢圓方程為(),則,,,所以曲線C的方程為.(2)設直線l:(),由消去y,可得.因為直線l總與橢圓C有且只有一個公共點,所以,.①又由可得;同理可得.由原點O到直線的距離為和,可得.②將①代入②得,當時,,綜上,面積的取值范圍是.【點睛】此題考查了軌跡和直線與曲線相交問題,軌跡通過已知條件找到幾何關系從而判斷軌跡,直線與曲線相

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論