2024屆河南省舞鋼市第二高級數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第1頁
2024屆河南省舞鋼市第二高級數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第2頁
2024屆河南省舞鋼市第二高級數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第3頁
2024屆河南省舞鋼市第二高級數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第4頁
2024屆河南省舞鋼市第二高級數(shù)學(xué)高一下期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆河南省舞鋼市第二高級數(shù)學(xué)高一下期末統(tǒng)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知點在角的終邊上,函數(shù)圖象上與軸最近的兩個對稱中心間的距離為,則的值為()A. B. C. D.2.把函數(shù)的圖象上的所有點的橫坐標(biāo)縮小到原來的一半(縱坐標(biāo)不變),然后把圖象向左平移個單位,則所得圖形對應(yīng)的函數(shù)解析式為()A. B.C. D.3.從2名男同學(xué)和3名女同學(xué)中任選2人參加社區(qū)服務(wù),則選中的2人都是女同學(xué)的概率為A. B. C. D.4.10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是15,17,14,10,15,17,17,16,14,12.設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有().A. B. C. D.5.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知asinA-bsinB=4csinC,cosA=-,則=A.6 B.5 C.4 D.36.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最大值為()A.3 B.4 C.18 D.407.已知直三棱柱的所有頂點都在球0的表面上,,,則=()A.1 B.2 C. D.48.不等式的解集為()A. B. C. D.9.在中,內(nèi)角,,的對邊分別為,,,且=.則A. B. C. D.10.若實數(shù)x,y滿足條件,目標(biāo)函數(shù),則z的最大值為()A. B.1 C.2 D.0二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,若,則實數(shù)_______.12.若是函數(shù)的兩個不同的零點,且這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則的值等于________.13.函數(shù)的最大值為______.14.如圖,長方體的體積是120,E為的中點,則三棱錐E-BCD的體積是_____.15.5人排成一行合影,甲和乙不相鄰的排法有______種.(用數(shù)字回答)16.已知函數(shù)的定義域為,則實數(shù)的取值范圍為_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知是遞增數(shù)列,其前項和為,,且,.(Ⅰ)求數(shù)列的通項;(Ⅱ)是否存在使得成立?若存在,寫出一組符合條件的的值;若不存在,請說明理由;(Ⅲ)設(shè),若對于任意的,不等式恒成立,求正整數(shù)的最大值.18.在中,內(nèi)角所對的邊分別為,且.(1)求的值;(2)若,求的面積.19.已知中,,,點D在AB上,,并且.(1)求BC的長度;(2)若點E為AB中點,求CE的長度.20.已知數(shù)列的各項均為正數(shù),對任意,它的前項和滿足,并且,,成等比數(shù)列.(1)求數(shù)列的通項公式;(2)設(shè),為數(shù)列的前項和,求.21.如圖,在平面直角坐標(biāo)系中,已知圓:,點,過點的直線與圓交于不同的兩點(不在y軸上).(1)若直線的斜率為3,求的長度;(2)設(shè)直線的斜率分別為,求證:為定值,并求出該定值;(3)設(shè)的中點為,是否存在直線,使得?若存在,求出直線的方程;若不存在,說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】由題意,則,即,則;又由三角函數(shù)的定義可得,則,應(yīng)選答案C.2、D【解題分析】

函數(shù)的圖象上的所有點的橫坐標(biāo)縮小到原來的一半(縱坐標(biāo)不變),的系數(shù)變?yōu)樵瓉淼?倍,即為2,然后根據(jù)平移求出函數(shù)的解析式.【題目詳解】函數(shù)的圖象上的所有點的橫坐標(biāo)縮小到原來的一半(縱坐標(biāo)不變),得到,把圖象向左平移個單位,得到故選:.【題目點撥】本題考查函數(shù)的圖象變換.準(zhǔn)確理解變換規(guī)則是關(guān)鍵,屬于中檔題.3、D【解題分析】分析:分別求出事件“2名男同學(xué)和3名女同學(xué)中任選2人參加社區(qū)服務(wù)”的總可能及事件“選中的2人都是女同學(xué)”的總可能,代入概率公式可求得概率.詳解:設(shè)2名男同學(xué)為,3名女同學(xué)為,從以上5名同學(xué)中任選2人總共有共10種可能,選中的2人都是女同學(xué)的情況共有共三種可能則選中的2人都是女同學(xué)的概率為,故選D.點睛:應(yīng)用古典概型求某事件的步驟:第一步,判斷本試驗的結(jié)果是否為等可能事件,設(shè)出事件;第二步,分別求出基本事件的總數(shù)與所求事件中所包含的基本事件個數(shù);第三步,利用公式求出事件的概率.4、B【解題分析】

根據(jù)所給數(shù)據(jù),分別求出平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,然后進行比較可得選項.【題目詳解】,中位數(shù)為,眾數(shù)為.故選:B.【題目點撥】本題主要考查統(tǒng)計量的求解,明確平均數(shù)、中位數(shù)、眾數(shù)的求解方法是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).5、A【解題分析】

利用余弦定理推論得出a,b,c關(guān)系,在結(jié)合正弦定理邊角互換列出方程,解出結(jié)果.【題目詳解】詳解:由已知及正弦定理可得,由余弦定理推論可得,故選A.【題目點撥】本題考查正弦定理及余弦定理推論的應(yīng)用.6、C【解題分析】不等式所表示的平面區(qū)域如下圖所示,當(dāng)所表示直線經(jīng)過點時,有最大值考點:線性規(guī)劃.7、B【解題分析】

由題得在底面的投影為的外心,故為的中點,再利用數(shù)量積計算得解.【題目詳解】依題意,在底面的投影為的外心,因為,故為的中點,,故選B.【題目點撥】本題主要考查平面向量的運算,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.8、B【解題分析】

可將分式不等式轉(zhuǎn)化為一元二次不等式,注意分母不為零.【題目詳解】原不等式可化為,其解集為,故選B.【題目點撥】一般地,等價于,而則等價于,注意分式不等式轉(zhuǎn)化為整式不等式時分母不為零.9、C【解題分析】試題分析:由正弦定理得,,由于,,,故答案為C.考點:正弦定理的應(yīng)用.10、C【解題分析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最大值.【題目詳解】若實數(shù)x,y滿足條件,目標(biāo)函數(shù)如圖:當(dāng)時函數(shù)取最大值為故答案選C【題目點撥】求線性目標(biāo)函數(shù)的最值:當(dāng)時,直線過可行域且在軸上截距最大時,值最大,在軸截距最小時,z值最小;當(dāng)時,直線過可行域且在軸上截距最大時,值最小,在軸上截距最小時,值最大.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

利用平面向量垂直的數(shù)量積關(guān)系可得,再利用數(shù)量積的坐標(biāo)運算可得:,解方程即可.【題目詳解】因為,所以,整理得:,解得:【題目點撥】本題主要考查了平面向量垂直的坐標(biāo)關(guān)系及方程思想,屬于基礎(chǔ)題.12、1【解題分析】

由一元二次方程根與系數(shù)的關(guān)系得到a+b=p,ab=q,再由a,b,﹣2這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列列關(guān)于a,b的方程組,求得a,b后得答案.【題目詳解】由題意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2這三個數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,則p+q=1.故答案為1.點評:本題考查了一元二次方程根與系數(shù)的關(guān)系,考查了等差數(shù)列和等比數(shù)列的性質(zhì),是基礎(chǔ)題.【思路點睛】解本題首先要能根據(jù)韋達定理判斷出a,b均為正值,當(dāng)他們與-2成等差數(shù)列時,共有6種可能,當(dāng)-2為等差中項時,因為,所以不可取,則-2只能作為首項或者末項,這兩種數(shù)列的公差互為相反數(shù);又a,b與-2可排序成等比數(shù)列,由等比中項公式可知-2必為等比中項,兩數(shù)列搞清楚以后,便可列方程組求解p,q.13、【解題分析】

設(shè),,,則,,可得,再根據(jù)正弦函數(shù)的定義域和值域,求得函數(shù)的最值.【題目詳解】解:函數(shù),設(shè),,則,,,,故當(dāng),即時,函數(shù),故故答案為:;【題目點撥】本題主要考查求函數(shù)的值域,正弦函數(shù)的定義域和值域,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.14、10.【解題分析】

由題意結(jié)合幾何體的特征和所給幾何體的性質(zhì)可得三棱錐的體積.【題目詳解】因為長方體的體積為120,所以,因為為的中點,所以,由長方體的性質(zhì)知底面,所以是三棱錐的底面上的高,所以三棱錐的體積.【題目點撥】本題蘊含“整體和局部”的對立統(tǒng)一規(guī)律.在幾何體面積或體積的計算問題中,往往需要注意理清整體和局部的關(guān)系,靈活利用“割”與“補”的方法解題.15、72【解題分析】

先對其中3個人進行全排列有種,再對甲和乙進行插空有種,利用乘法原理得到排法總數(shù)為.【題目詳解】先對其中3個人進行全排列有種,再對甲和乙進行插空有種,利用乘法原理得到排法總數(shù)為種,故答案為72【題目點撥】本題考查排列、組合計數(shù)原理的應(yīng)用,考查基本運算能力.16、【解題分析】

根據(jù)對數(shù)的真數(shù)對于0,再結(jié)合不等式即可解決.【題目詳解】函數(shù)的定義域為等價于對于任意的實數(shù),恒成立當(dāng)時成立當(dāng)時,等價于綜上可得【題目點撥】本題主要考查了函數(shù)的定義域以及不等式恒成立的問題,函數(shù)的定義域常考的由1、,2、,3、.屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)不存在(3)1【解題分析】

(Ⅰ),得,解得,或.由于,所以.因為,所以.故,整理,得,即.因為是遞增數(shù)列,且,故,因此.則數(shù)列是以2為首項,為公差的等差數(shù)列.所以.………………5分(Ⅱ)滿足條件的正整數(shù)不存在,證明如下:假設(shè)存在,使得,則.整理,得,①顯然,左邊為整數(shù),所以①式不成立.故滿足條件的正整數(shù)不存在.……1分(Ⅲ),不等式可轉(zhuǎn)化為.設(shè),則.所以,即當(dāng)增大時,也增大.要使不等式對于任意的恒成立,只需即可.因為,所以.即.所以,正整數(shù)的最大值為1.………14分18、(1);(2).【解題分析】

(1)首先利用正弦定理邊化角,再利用即可得到答案;(2)利用余弦定理和面積公式即可得到答案.【題目詳解】(1),所以,所以,即因為,所以,所以,即.(2)因為,所以.由余弦定理可得,因為,所以,解得.故的面積為.【題目點撥】本題主要考查解三角形的綜合應(yīng)用,意在考查學(xué)生的基礎(chǔ)知識,轉(zhuǎn)化能力及計算能力,難度不大.19、(1);(2)【解題分析】

(1)根據(jù)所給條件,結(jié)合三角函數(shù)可先求得.再由即可求得,進而得的值.在中由余弦定理即可求得的值.(2)由(1)可知,而,且E為AB中點,可得,.在可由勾股定理求得,再在由勾股定理求得即可.【題目詳解】(1)由,,可知,又,可得,所以.在中,由余弦定理可得,所以;(2)由(1)可知,,又點E為AB中點,可得,,在直角中,,在直角中,,所以.【題目點撥】本題考查了余弦定理在解三角形中的應(yīng)用,線段關(guān)系及勾股定理求線段長的應(yīng)用,屬于基礎(chǔ)題.20、(1),(2)【解題分析】

(1)根據(jù)與的關(guān)系,利用臨差法得到,知公差為3;再由代入遞推關(guān)系求;(2)觀察數(shù)列的通項公式,相鄰兩項的和有規(guī)律,故采用并項求和法,求其前項和.【題目詳解】(1)對任意,有,①當(dāng)時,有,解得或.當(dāng)時,有.②①-②并整理得.而數(shù)列的各項均為正數(shù),.當(dāng)時,,此時成立;當(dāng)時,,此時,不成立,舍去.,.(2).【題目點撥】已知與的遞推關(guān)系,利用臨差法求時,要注意對下標(biāo)與分兩種情況,即;數(shù)列求和時要先觀察通項特點,再決定采用什么方法.21、(1);(2)見解析;(3)見解析【解題分析】

(1)求出圓心O到直線的距離,已知半徑通過勾股定理即可算出弦長的一半,即可算出弦長。(2)設(shè),直線的方程為,聯(lián)立圓的方程通過韋達定理化簡即可。(3)設(shè)點,根據(jù),得,表示出,的關(guān)系,再聯(lián)立直

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論