【高中數(shù)學(xué)】?jī)山呛团c差的正弦、余弦和正切公式第二課時(shí) 2023-2024學(xué)年高一上人教A版(2019)必修第一冊(cè)_第1頁
【高中數(shù)學(xué)】?jī)山呛团c差的正弦、余弦和正切公式第二課時(shí) 2023-2024學(xué)年高一上人教A版(2019)必修第一冊(cè)_第2頁
【高中數(shù)學(xué)】?jī)山呛团c差的正弦、余弦和正切公式第二課時(shí) 2023-2024學(xué)年高一上人教A版(2019)必修第一冊(cè)_第3頁
【高中數(shù)學(xué)】?jī)山呛团c差的正弦、余弦和正切公式第二課時(shí) 2023-2024學(xué)年高一上人教A版(2019)必修第一冊(cè)_第4頁
【高中數(shù)學(xué)】?jī)山呛团c差的正弦、余弦和正切公式第二課時(shí) 2023-2024學(xué)年高一上人教A版(2019)必修第一冊(cè)_第5頁
已閱讀5頁,還剩21頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

兩角和與差的正弦、余弦、正切公式5.5.1第二課時(shí)學(xué)習(xí)目標(biāo)1.能從兩角差的余弦公式推導(dǎo)出兩角和與差的正弦、余弦、正切公式,了解它們的內(nèi)在聯(lián)系.(邏輯推理)2.能運(yùn)用兩角和與差的正弦、余弦、正切公式進(jìn)行簡(jiǎn)單的化簡(jiǎn)、求值.(數(shù)學(xué)運(yùn)算)思維導(dǎo)圖復(fù)習(xí)回顧上節(jié)課我們利用圓的選轉(zhuǎn)對(duì)稱性推導(dǎo)出兩角差的余弦公式,請(qǐng)同學(xué)們?cè)诨仡櫷茖?dǎo)過程的基礎(chǔ)上寫出差角的余弦公式.

此公式給出了任意角的正弦、余弦與其差角的余弦之間的關(guān)系.思考由兩角差的余弦出發(fā),你能不能推導(dǎo)出兩角和的余弦公式?探究新知

它們都是角的余弦,知識(shí)角的形式不同.

基于上述差異與聯(lián)系,如何由兩角差的余弦公式得到兩角和的余弦公式

依照上述解決問題的思路,你能直接寫出兩角和的正弦公式和正切公式嗎?

知識(shí)梳理名稱簡(jiǎn)記符號(hào)公式使用條件兩角和的余弦α,β∈R兩角差的余弦α,β∈R兩角和的正弦α,β∈R兩角差的正弦α,β∈R兩角和的正切兩角差的正切

兩角和與差的正弦公式記憶口訣: 正余余正,符號(hào)相同.正余余正表示展開后的兩項(xiàng)分別是兩角的正弦乘余弦、余弦乘正弦;符號(hào)相同表示展開后兩項(xiàng)之間的連接符號(hào)與展開前兩角之間的連接符號(hào)相同,即兩角和時(shí)用“+”,兩角差時(shí)用“-”.

兩角和與差的正切公式公式的右邊為分式形式,其中分子為tan

α,tan

β的和或差.分母為1與tan

αtan

β的差或和.公式中左邊的加減號(hào)與右邊分子上的加減號(hào)相同,與分母上的加減號(hào)相反.符號(hào)變化規(guī)律可簡(jiǎn)記為“分子同,分母反”.當(dāng)α,β,α±β角的正切值不存在時(shí),不能使用上述公式,但可以用誘導(dǎo)公式或其他方法解題.題型探究題型一.給角求值(5)∵(1+tan

21°)(1+tan

24°)=1+tan

21°+tan

24°+tan

21°tan

24°=1+tan(21°+24°)(1-tan

21°tan

24°)+tan

21°tan

24°=1+(1-tan

21°tan

24°)tan

45°+tan

21°tan

24°=1+1-tan

21°tan

24°+tan

21°tan

24°=2.同理可得(1+tan

22°)(1+tan

23°)=2,∴原式=2×2=4.兩角和與差的正弦公式的一般使用方法(1)正用:把sin(α±β)從左向右展開.(2)逆用:公式的右邊化簡(jiǎn)成左邊的形式,當(dāng)結(jié)構(gòu)不具備條件時(shí),要用相關(guān)公式調(diào)節(jié)后再逆用.(3)變形應(yīng)用:它涉及兩個(gè)方面,一是公式本身的變形;二是角的變形,也稱為角的拆分變換,如β=(α+β)-α,2α=(α+β)+(α-β).題型探究題型二.給值求值∴cos2α=cos[(α-β)+(α+β)]=cos(α-β)cos(α+β)-sin(α-β)sin(α+β)所以sin2β=sin[(α+β)-(α-β)]=sin(α+β)cos(α-β)-cos(α+β)sin(α-β)給值求值的解題策略在解決此類題目時(shí),一定要注意已知角與所求角之間的關(guān)系,恰當(dāng)?shù)剡\(yùn)用拆角、拼角技巧,同時(shí)分析角之間的關(guān)系,利用角的代換化異角為同角,具體做法是:(1)當(dāng)條件中有兩角時(shí),一般把“所求角”表示為“已知兩角”的和或差.(2)當(dāng)已知角有一個(gè)時(shí),可利用誘導(dǎo)公式把“所求角”轉(zhuǎn)化為“已知角”.題型探究題型三.給值求角所以sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+β)sinα兩角和與差的正切公式的變形及常見結(jié)論1.公式的變形(1)兩角和的正切公式的變形

③tanα+tanβ+tanαtanβtan(α+β)=tan(α

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論