貴州省銅仁市思南縣思南中學2023-2024學年高三數學第一學期期末聯考試題含解析_第1頁
貴州省銅仁市思南縣思南中學2023-2024學年高三數學第一學期期末聯考試題含解析_第2頁
貴州省銅仁市思南縣思南中學2023-2024學年高三數學第一學期期末聯考試題含解析_第3頁
貴州省銅仁市思南縣思南中學2023-2024學年高三數學第一學期期末聯考試題含解析_第4頁
貴州省銅仁市思南縣思南中學2023-2024學年高三數學第一學期期末聯考試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

貴州省銅仁市思南縣思南中學2023-2024學年高三數學第一學期期末聯考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,當時,恒成立,則的取值范圍為()A. B. C. D.2.設過定點的直線與橢圓:交于不同的兩點,,若原點在以為直徑的圓的外部,則直線的斜率的取值范圍為()A. B.C. D.3.下列四個圖象可能是函數圖象的是()A. B. C. D.4.已知函數的圖像上有且僅有四個不同的關于直線對稱的點在的圖像上,則的取值范圍是()A. B. C. D.5.已知函數,,其中為自然對數的底數,若存在實數,使成立,則實數的值為()A. B. C. D.6.設點,P為曲線上動點,若點A,P間距離的最小值為,則實數t的值為()A. B. C. D.7.歐拉公式為,(虛數單位)是由瑞士著名數學家歐拉發現的,它將指數函數的定義域擴大到復數,建立了三角函數和指數函數的關系,它在復變函數論里非常重要,被譽為“數學中的天橋”.根據歐拉公式可知,表示的復數位于復平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.正項等差數列的前和為,已知,則=()A.35 B.36 C.45 D.549.已知函數()的最小值為0,則()A. B. C. D.10.若單位向量,夾角為,,且,則實數()A.-1 B.2 C.0或-1 D.2或-111.已知函數是定義在上的偶函數,當時,,則,,的大小關系為()A. B. C. D.12.已知函數是奇函數,則的值為()A.-10 B.-9 C.-7 D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,,若,則________.14.在各項均為正數的等比數列中,,且,成等差數列,則___________.15.下圖是一個算法流程圖,則輸出的的值為__________.16.在中,角、、所對的邊分別為、、,若,,則的取值范圍是_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左、右焦點分別為直線垂直于軸,垂足為,與拋物線交于不同的兩點,且過的直線與橢圓交于兩點,設且.(1)求點的坐標;(2)求的取值范圍.18.(12分)隨著科技的發展,網絡已逐漸融入了人們的生活.網購是非常方便的購物方式,為了了解網購在我市的普及情況,某調查機構進行了有關網購的調查問卷,并從參與調查的市民中隨機抽取了男女各100人進行分析,從而得到表(單位:人)經常網購偶爾或不用網購合計男性50100女性70100合計(1)完成上表,并根據以上數據判斷能否在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關?(2)①現從所抽取的女市民中利用分層抽樣的方法抽取10人,再從這10人中隨機選取3人贈送優惠券,求選取的3人中至少有2人經常網購的概率;②將頻率視為概率,從我市所有參與調查的市民中隨機抽取10人贈送禮品,記其中經常網購的人數為,求隨機變量的數學期望和方差.參考公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82819.(12分)若,且(1)求的最小值;(2)是否存在,使得?并說明理由.20.(12分)如圖,在三棱柱中,平面平面,側面為平行四邊形,側面為正方形,,,為的中點.(1)求證:平面;(2)求二面角的大小.21.(12分)眼保健操是一種眼睛的保健體操,主要是通過按摩眼部穴位,調整眼及頭部的血液循環,調節肌肉,改善眼的疲勞,達到預防近視等眼部疾病的目的.某學校為了調查推廣眼保健操對改善學生視力的效果,在應屆高三的全體800名學生中隨機抽取了100名學生進行視力檢查,并得到如圖的頻率分布直方圖.(1)若直方圖中后三組的頻數成等差數列,試估計全年級視力在5.0以上的人數;(2)為了研究學生的視力與眼保健操是否有關系,對年級不做眼保健操和堅持做眼保健操的學生進行了調查,得到下表中數據,根據表中的數據,能否在犯錯的概率不超過0.005的前提下認為視力與眼保健操有關系?(3)在(2)中調查的100名學生中,按照分層抽樣在不近視的學生中抽取8人,進一步調查他們良好的護眼習慣,在這8人中任取2人,記堅持做眼保健操的學生人數為X,求X的分布列和數學期望.附:0.100.050.0250.0100.005k2.7063.8415.0246.6357.87922.(10分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點,為棱上一點,若平面.(1)求線段的長;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

分析可得,顯然在上恒成立,只需討論時的情況即可,,然后構造函數,結合的單調性,不等式等價于,進而求得的取值范圍即可.【詳解】由題意,若,顯然不是恒大于零,故.,則在上恒成立;當時,等價于,因為,所以.設,由,顯然在上單調遞增,因為,所以等價于,即,則.設,則.令,解得,易得在上單調遞增,在上單調遞減,從而,故.故選:A.【點睛】本題考查了不等式恒成立問題,利用函數單調性是解決本題的關鍵,考查了學生的推理能力,屬于基礎題.2、D【解析】

設直線:,,,由原點在以為直徑的圓的外部,可得,聯立直線與橢圓方程,結合韋達定理,即可求得答案.【詳解】顯然直線不滿足條件,故可設直線:,,,由,得,,解得或,,,,,,解得,直線的斜率的取值范圍為.故選:D.【點睛】本題解題關鍵是掌握橢圓的基礎知識和圓錐曲線與直線交點問題時,通常用直線和圓錐曲線聯立方程組,通過韋達定理建立起目標的關系式,考查了分析能力和計算能力,屬于中檔題.3、C【解析】

首先求出函數的定義域,其函數圖象可由的圖象沿軸向左平移1個單位而得到,因為為奇函數,即可得到函數圖象關于對稱,即可排除A、D,再根據時函數值,排除B,即可得解.【詳解】∵的定義域為,其圖象可由的圖象沿軸向左平移1個單位而得到,∵為奇函數,圖象關于原點對稱,∴的圖象關于點成中心對稱.可排除A、D項.當時,,∴B項不正確.故選:C【點睛】本題考查函數的性質與識圖能力,一般根據四個選擇項來判斷對應的函數性質,即可排除三個不符的選項,屬于中檔題.4、D【解析】

根據對稱關系可將問題轉化為與有且僅有四個不同的交點;利用導數研究的單調性從而得到的圖象;由直線恒過定點,通過數形結合的方式可確定;利用過某一點曲線切線斜率的求解方法可求得和,進而得到結果.【詳解】關于直線對稱的直線方程為:原題等價于與有且僅有四個不同的交點由可知,直線恒過點當時,在上單調遞減;在上單調遞增由此可得圖象如下圖所示:其中、為過點的曲線的兩條切線,切點分別為由圖象可知,當時,與有且僅有四個不同的交點設,,則,解得:設,,則,解得:,則本題正確選項:【點睛】本題考查根據直線與曲線交點個數確定參數范圍的問題;涉及到過某一點的曲線切線斜率的求解問題;解題關鍵是能夠通過對稱性將問題轉化為直線與曲線交點個數的問題,通過確定直線恒過的定點,采用數形結合的方式來進行求解.5、A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數,(﹣1,+∞)上是增函數,故當x=﹣1時,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當且僅當ex﹣a=4ea﹣x,即x=a+ln1時,等號成立);故f(x)﹣g(x)≥3(當且僅當等號同時成立時,等號成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.6、C【解析】

設,求,作為的函數,其最小值是6,利用導數知識求的最小值.【詳解】設,則,記,,易知是增函數,且的值域是,∴的唯一解,且時,,時,,即,由題意,而,,∴,解得,.∴.故選:C.【點睛】本題考查導數的應用,考查用導數求最值.解題時對和的關系的處理是解題關鍵.7、A【解析】

計算,得到答案.【詳解】根據題意,故,表示的復數在第一象限.故選:.【點睛】本題考查了復數的計算,意在考查學生的計算能力和理解能力.8、C【解析】

由等差數列通項公式得,求出,再利用等差數列前項和公式能求出.【詳解】正項等差數列的前項和,,,解得或(舍),,故選C.【點睛】本題主要考查等差數列的性質與求和公式,屬于中檔題.解等差數列問題要注意應用等差數列的性質()與前項和的關系.9、C【解析】

設,計算可得,再結合圖像即可求出答案.【詳解】設,則,則,由于函數的最小值為0,作出函數的大致圖像,結合圖像,,得,所以.故選:C【點睛】本題主要考查了分段函數的圖像與性質,考查轉化思想,考查數形結合思想,屬于中檔題.10、D【解析】

利用向量模的運算列方程,結合向量數量積的運算,求得實數的值.【詳解】由于,所以,即,,即,解得或.故選:D【點睛】本小題主要考查向量模的運算,考查向量數量積的運算,屬于基礎題.11、C【解析】

根據函數的奇偶性得,再比較的大小,根據函數的單調性可得選項.【詳解】依題意得,,當時,,因為,所以在上單調遞增,又在上單調遞增,所以在上單調遞增,,即,故選:C.【點睛】本題考查函數的奇偶性的應用、冪、指、對的大小比較,以及根據函數的單調性比較大小,屬于中檔題.12、B【解析】

根據分段函數表達式,先求得的值,然后結合的奇偶性,求得的值.【詳解】因為函數是奇函數,所以,.故選:B【點睛】本題主要考查分段函數的解析式、分段函數求函數值,考查數形結合思想.意在考查學生的運算能力,分析問題、解決問題的能力.二、填空題:本題共4小題,每小題5分,共20分。13、10【解析】

根據垂直得到,代入計算得到答案.【詳解】,則,解得,故,故.故答案為:.【點睛】本題考查了根據向量垂直求參數,向量模,意在考查學生的計算能力.14、【解析】

利用等差中項的性質和等比數列通項公式得到關于的方程,解方程求出代入等比數列通項公式即可.【詳解】因為,成等差數列,所以,由等比數列通項公式得,,所以,解得或,因為,所以,所以等比數列的通項公式為.故答案為:【點睛】本題考查等差中項的性質和等比數列通項公式;考查運算求解能力和知識綜合運用能力;熟練掌握等差中項和等比數列通項公式是求解本題的關鍵;屬于中檔題.15、3【解析】

分析程序中各變量、各語句的作用,根據流程圖所示的順序,即可得出結論.【詳解】解:初始,第一次循環:;第二次循環:;第三次循環:;經判斷,此時跳出循環,輸出.故答案為:【點睛】本題考查了程序框圖的應用問題,解題的關鍵是對算法語句的理解,屬基礎題.16、【解析】

計算出角的取值范圍,結合正弦定理可求得的取值范圍.【詳解】,則,所以,,由正弦定理,.因此,的取值范圍是.故答案為:.【點睛】本題主要考查了正弦定理,正弦函數圖象和性質,考查了轉化思想,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)設出的坐標,代入,結合在拋物線上,求得兩點的橫坐標,進而求得點的坐標.(2)設出直線的方程,聯立直線的方程和橢圓方程,寫出韋達定理,結合,求得的表達式,結合二次函數的性質求得的取值范圍.【詳解】(1)可知,設則,又,所以解得所以.(2)據題意,直線的斜率必不為所以設將直線方程代入橢圓的方程中,整理得,設則①②因為所以且將①式平方除以②式得所以又解得又,所以令,則所以【點睛】本小題主要考查直線和拋物線的位置關系,考查直線和橢圓的位置關系,考查向量數量積的坐標運算,考查向量模的坐標運算,考查化歸與轉化的數學思想方法,考查運算求解能力,屬于難題.18、(Ⅰ)詳見解析;(Ⅱ)①;②數學期望為6,方差為2.4.【解析】

(1)完成列聯表,由列聯表,得,由此能在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關.(2)①由題意所抽取的10名女市民中,經常網購的有人,偶爾或不用網購的有人,由此能選取的3人中至少有2人經常網購的概率.②由列聯表可知,抽到經常網購的市民的頻率為:,由題意,由此能求出隨機變量的數學期望和方差.【詳解】解:(1)完成列聯表(單位:人):經常網購偶爾或不用網購合計男性5050100女性7030100合計12080200由列聯表,得:,∴能在犯錯誤的概率不超過0.01的前提下認為我市市民網購與性別有關.(2)①由題意所抽取的10名女市民中,經常網購的有人,偶爾或不用網購的有人,∴選取的3人中至少有2人經常網購的概率為:.②由列聯表可知,抽到經常網購的市民的頻率為:,將頻率視為概率,∴從我市市民中任意抽取一人,恰好抽到經常網購市民的概率為0.6,由題意,∴隨機變量的數學期望,方差D(X)=.【點睛】本題考查獨立檢驗的應用,考查概率、離散型隨機變量的分布列、數學期望、方差的求法,考查古典概型、二項分布等基礎知識,考查運算求解能力,是中檔題.19、(1);(2)不存在.【解析】

(1)由已知,利用基本不等式的和積轉化可求,利用基本不等式可將轉化為,由不等式的傳遞性,可求的最小值;(2)由基本不等式可求的最小值為,而,故不存在.【詳解】(1)由,得,且當時取等號.故,且當時取等號.所以的最小值為;(2)由(1)知,.由于,從而不存在,使得成立.【考點定位】基本不等式.20、(1)證明見解析(2)【解析】

(1)連接,交與,連接,由,得出結論;(2)以為原點,,,分別為,,軸建立空間直角坐標系,求出平面的法向量,利用夾角公式求出即可.【詳解】(1)連接,交與,連接,在中,,又平面,平面,所以平面;(2)由平面平面,,為平面與平面的交線,故平面,故,又,所以平面,以為原點,,,分別為,,軸建立空間直角坐標系,,,,,,,設平面的法向量為,,,由,得,平面的法向量為,由,故二面角的大小為.【點睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1)(2)能在犯錯誤的概率不超過0.005的前提下認為視力與眼保健操有關系(3)詳見解析【解析】

(1)由題意可計算后三組的頻數的總數,由其成等差數列可得后三組頻數,可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論