




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年江蘇省江陰市要塞片九年級數學第一學期期末教學質量檢測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.方程的根是()A.2 B.0 C.0或2 D.0或32.二次函數y=x2的圖象向左平移1個單位,再向下平移3個單位后,所得拋物線的函數表達式是()A.y=+3 B.y=+3C.y=﹣3 D.y=﹣33.如圖:已知,且,則()A.5 B.3 C.3.2 D.44.如圖,點A.B.C在⊙D上,∠ABC=70°,則∠ADC的度數為()A.110° B.140° C.35° D.130°5.如圖,在矩形中,,的平分線交邊于點,于點,連接并延長交邊于點,連接交于點,給出下列命題:(1)(2)(3)(4)其中正確命題的個數是()A. B. C. D.6.如圖所示的幾何體,它的左視圖是()A. B. C. D.7.如圖,A、B、C、D四個點均在O上,∠AOD=40°,弦DC的長等于半徑,則∠B的度數為(?)A.40° B.45° C.50° D.55°8.如圖,AB是半圓O的直徑,∠BAC=40°,則∠D的度數是()A.140° B.130° C.120° D.110°9.如圖,線段AB兩個端點的坐標分別是A(6,4),B(8,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,則端點C的坐標為()A.(3,2) B.(4,1) C.(3,1) D.(4,2)10.使關于的二次函數在軸左側隨的增大而增大,且使得關于的分式方程有整數解的整數的和為()A.10 B.4 C.0 D.311.下列圖形中,既是軸對稱圖形又是中心對稱圖形的共有()A.1個 B.2個 C.3個 D.4個12.如圖所示,半徑為3的⊙A經過原點O和C(0,2),B是y軸左側⊙A優弧上的一點,則()A.2 B. C. D.二、填空題(每題4分,共24分)13.如圖,已知AD∥BE∥CF,它們依次交直線、于點A、B、C和點D、E、F.如果,DF=15,那么線段DE的長是__.14.已知CD是Rt△ABC的斜邊AB上的中線,若∠A=35°,則∠BCD=_____________.15.若點P(2a+3b,﹣2)關于原點的對稱點為Q(3,a﹣2b),則(3a+b)2020=______.16.將二次函數y=2x2的圖像沿x軸向左平移2個單位,再向下平移3個單位后,所得函數圖像的函數關系式為______________.17.已知一扇形,半徑為6,圓心角為120°,則所對的弧長為___.18.已知,如圖,在□ABCD中,AB=4cm,AD=7cm,∠ABC的平分線交AD于點E,交CD的延長線于點F,則DF=______cm.三、解答題(共78分)19.(8分)(1)(問題發現)如圖①,正方形AEFG的兩邊分別在正方形ABCD的邊AB和AD上,連接CF.填空:①線段CF與DG的數量關系為;②直線CF與DG所夾銳角的度數為.(2)(拓展探究)如圖②,將正方形AEFG繞點A逆時針旋轉,在旋轉的過程中,(1)中的結論是否仍然成立,請利用圖②進行說明.(3(解決問題)如圖③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O為AC的中點.若點D在直線BC上運動,連接OE,則在點D的運動過程中,線段OE長的最小值為(直接寫出結果).20.(8分)如圖是一個橫斷面為拋物線形狀的拱橋,當水面寬(AB)為4m時,拱頂(拱橋洞的最高點)離水面2m.當水面下降1m時,求水面的寬度增加了多少?21.(8分)數學活動課上,老師和學生一起去測量學校升旗臺上旗桿AB的高度,如圖,老師測得升旗臺前斜坡FC的坡比為iFC=1:10(即EF:CE=1:10),學生小明站在離升旗臺水平距離為35m(即CE=35m)處的C點,測得旗桿頂端B的仰角為α,已知tanα=,升旗臺高AF=1m,小明身高CD=1.6m,請幫小明計算出旗桿AB的高度.22.(10分)如圖,拋物線交軸于、兩點,交軸于點,點的坐標為,直線經過點、.(1)求拋物線的函數表達式;(2)點是直線上方拋物線上的一動點,求面積的最大值并求出此時點的坐標;(3)過點的直線交直線于點,連接,當直線與直線的一個夾角等于的3倍時,請直接寫出點的坐標.23.(10分)如圖,四邊形ABCD中,對角線AC、BD相交于點O,且AD//BC,BD的垂直平分線經過點O,分別與AD、BC交于點E、F(1)求證:四邊形ABCD為平行四邊形;(2)求證:四邊形BFDE為菱形.24.(10分)如圖,在中,連接,點,分別是的點(點不與點重合),,相交于點.(1)求,的長;(2)求證:~;(3)當時,請直接寫出的長.25.(12分)隨著人民生活水平的不斷提高,某市家庭轎車的擁有量逐年增加,據統計,該市2017年底擁有家庭轎車64萬輛,2019年底家庭轎車的擁有量達到100萬輛.(1)求2017年底至2019年底該市汽車擁有量的年平均增長率;(2)該市交通部門為控制汽車擁有量的增長速度,要求到2020年底全市汽車擁有量不超過118萬輛,預計2020年報廢的汽車數量是2019年底汽車擁有量的8%,求2019年底至2020年底該市汽車擁有量的年增長率要控制在什么范圍才能達到要求.26.超速行駛被稱為“馬路第一殺手”,為了讓駕駛員自覺遵守交通規則,市公路檢測中在一事故多發地段安裝了一個測速儀器,如圖所示,已知檢測點A設在距離公路BC20米處,∠B=45°,∠C=30°,現測得一輛汽車從B處行駛到C處所用時間為2.7秒.(1)求B,C之間的距離(結果保留根號);(2)如果此地限速為80km/h,那么這輛汽車是否超速?請說明理由.(參考數據:1.7,≈1.4)
參考答案一、選擇題(每題4分,共48分)1、D【分析】先把右邊的x移到左邊,然后再利用因式分解法解出x即可.【詳解】解:故選D.【點睛】本題是對一元二次方程的考查,熟練掌握一元二次方程的解法是解決本題的關鍵.2、D【分析】先求出原拋物線的頂點坐標,再根據平移,得到新拋物線的頂點坐標,即可得到答案.【詳解】∵原拋物線的頂點為(0,0),∴向左平移1個單位,再向下平移1個單位后,新拋物線的頂點為(﹣1,﹣1).∴新拋物線的解析式為:y=﹣1.故選:D.【點睛】本題主要考查二次函數圖象的平移規律,通過平移得到新拋物線的頂點坐標,是解題的關鍵.3、C【分析】根據平行線分線段成比例定理列出比例式,代入數值進行計算即可.【詳解】解:∵AD∥BE∥CF∴∵AB=4,BC=5,EF=4∴∴DE=3.2故選C【點睛】本題考查平行線分線段成比例定理,找準對應關系是解答此題的關鍵.4、B【解析】根據圓周角定理可得∠ADC=2∠ABC=140°,故選B.5、D【分析】根據矩形的性質,勾股定理,等腰三角形的判定與性質以及全等三角形的判定與性質逐一對各命題進行分析即可得出答案.【詳解】(1)在矩形ABCD中,∵DE平分∴∵∴是等腰直角三角形∴∴∵是等腰直角三角形∴∴∴∴∴,故(1)正確;(2),∴,故(2)正確;(3)∵∴∵∴∴∴∴∴∴∴,故(3)正確;(4)∵在和中,∴∴在和中,∴∴∴,故(4)正確故選D【點睛】本題考查了矩形的性質,勾股定理,全等三角形的判定及性質,等腰三角形的性質等,熟練掌握和靈活運用相關知識是解題的關鍵.6、D【解析】分析:根據從左邊看得到的圖形是左視圖,可得答案.詳解:從左邊看是等長的上下兩個矩形,上邊的矩形小,下邊的矩形大,兩矩形的公共邊是虛線,故選D.點睛:本題考查了簡單組合體的三視圖,從左邊看得到的圖形是左視圖.7、C【分析】如圖(見解析),先根據等邊三角形的判定與性質可得,從而可得,再根據圓周角定理即可得.【詳解】如圖,連接OC,由圓的半徑得:,弦DC的長等于半徑,,是等邊三角形,,,,由圓周角定理得:,故選:C.【點睛】本題考查了圓周角定理、等邊三角形的判定與性質等知識點,熟練掌握圓周角定理是解題關鍵.8、B【分析】根據圓周角定理求出∠ACB,根據三角形內角和定理求出∠B,求出∠D+∠B=180°,再代入求出即可.【詳解】∵AB是半圓O的直徑,∴∠ACB=90°,∵∠BAC=40°,∴∠B=180°﹣∠ACB﹣∠BAC=50°,∵A、B、C、D四點共圓,∴∠D+∠B=180°,∴∠D=130°,故選:B.【點睛】此題主要考查圓周角定理以及圓內接四邊形的性質,熟練掌握,即可解題.9、A【解析】試題分析:∵線段AB的兩個端點坐標分別為A(6,4),B(8,2),以原點O為位似中心,在第一象限內將線段AB縮小為原來的后得到線段CD,∴端點C的橫坐標和縱坐標都變為A點的一半,∴端點C的坐標為:(3,2).故選A.考點:1.位似變換;2.坐標與圖形性質.10、A【分析】根據“二次函數在y軸左側y隨x的增大而增大”求出a的取值范圍,然后解分式方程,最后根據整數解及a的范圍即可求出a的值,從而得到結果.【詳解】∵關于的二次函數在軸左側隨的增大而增大,,解得,把兩邊都乘以,得,整理,得,當時,,,∴使為整數,且的整數的值為2、3、5,∴滿足條件的整數的和為.故選:A.【點睛】本題考查了二次函數的性質與對稱軸,解分式方程,解分式方程時注意符號的變化.11、B【分析】根據中心對稱圖形和軸對稱圖形的概念即可得出答案.【詳解】根據中心對稱圖形和軸對稱圖形的概念,可以判定既是中心對稱圖形又是軸對稱圖形的有第3第4個共2個.故選B.考點:1.中心對稱圖形;2.軸對稱圖形.12、C【分析】根據題意連接CD,根據勾股定理求出OD,根據正切的定義求出tan∠D,根據圓周角定理得到∠B=∠D,等量代換即可.【詳解】解:連接CD(圓周角定理CD過圓心A),在Rt△OCD中,CD=6,OC=2,則OD=,tan∠D=,由圓周角定理得∠B=∠D,則tan∠B=,故選:C.【點睛】本題考查圓周角定理、銳角三角函數的定義,掌握在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半、熟記銳角三角函數的定義是解題的關鍵.二、填空題(每題4分,共24分)13、6【分析】由平行得比例,求出的長即可.【詳解】解:,,,,解得:,故答案為:6.【點睛】此題考查了平行線分線段成比例,熟練掌握平行線分線段成比例性質是解本題的關鍵.14、55°【分析】這道題可以根據CD為斜邊AB的中線得出CD=AD,由∠A=35°得出∠A=∠ACD=35°,則∠BCD=90°-35°=55°.【詳解】如圖,∵CD為斜邊AB的中線∴CD=AD∵∠A=35°∴∠A=∠ACD=35°∵∠ACD+∠BCD=90°則∠BCD=90°-35°=55°故填:55°.【點睛】此題主要考查三角形內角度求解,解題的關鍵是熟知直角三角形的性質.15、1【分析】直接利用關于原點對稱點的性質得出3a+b=﹣1,進而得出答案.【詳解】解:∵點P(2a+3b,﹣2)關于原點的對稱點為Q(3,a﹣2b),∴,故3a+b=﹣1,則(3a+b)2020=1.故答案為:1.【點睛】此題主要考查了關于原點對稱點的性質,正確記憶橫縱坐標的符號關系是解題關鍵.16、y=2(x+2)2-3【分析】根據“上加下減,左加右減”的原則進行解答即可.【詳解】解:根據“上加下減,左加右減”的原則可知,二次函數y=2x2的圖象向左平移2個單位,再向下平移3個單位后得到的圖象表達式為y=2(x+2)2-3【點睛】本題考查的是二次函數的圖象與幾何變換,熟知“上加下減,左加右減”的原則是解答此題的關鍵.17、4π.【分析】根據弧長公式求弧長即可.【詳解】此扇形的弧長==4π,故答案為:4π.【點睛】此題考查的是求弧長,掌握弧長公式:是解決此題的關鍵.18、3.【分析】首先根據平行四邊形的性質,得出AB=CD=4cm,AD=BC=7cm,∠ABF=∠BFC,又由BF是∠ABC的角平分線,可得∠ABF=∠CBF,∠BFC=∠CBF,進而得出CF=BC,即可得出DF.【詳解】,解:∵在□ABCD中,AB=4cm,AD=7cm,∴AB=CD=4cm,AD=BC=7cm,∠ABF=∠BFC又∵BF是∠ABC的角平分線∴∠ABF=∠CBF∴∠BFC=∠CBF∴CF=BC=7cm∴DF=CF-CD=7-4=3cm,故答案為3.【點睛】此題主要利用平行四邊形的性質,熟練運用即可解題.三、解答題(共78分)19、(1)①CF=DG;②45°;(2)成立,證明詳見解析;(3).【分析】(1)【問題發現】連接AF.易證A,F,C三點共線.易知AF=AG.AC=AD,推出CF=AC﹣AF=(AD﹣AG)=DG.(2)【拓展探究】連接AC,AF,延長CF交DG的延長線于點K,AG交FK于點O.證明△CAF∽△DAG即可解決問題.(3)【解決問題】證明△BAD≌△CAE,推出∠ACE=∠ABC=45°,可得∠BCE=90°,推出點E的運動軌跡是在射線OCE上,當OE⊥CE時,OE的長最短.【詳解】解:(1)【問題發現】如圖①中,①線段CF與DG的數量關系為CF=DG;②直線CF與DG所夾銳角的度數為45°.理由:如圖①中,連接AF.易證A,F,C三點共線.∵AF=AG.AC=AD,∴CF=AC﹣AF=(AD﹣AG)=DG.故答案為CF=DG,45°.(2)【拓展探究】結論不變.理由:連接AC,AF,延長CF交DG的延長線于點K,AG交FK于點O.∵∠CAD=∠FAG=45°,∴∠CAF=∠DAG,∵AC=AD,AF=AG,∴,∴△CAF∽△DAG,∴,∠AFC=∠AGD,∴CF=DG,∠AFO=∠OGK,∵∠AOF=∠GOK,∴∠K=∠FAO=45°.(3)【解決問題】如圖3中,連接EC.∵AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∠B=∠ACB=45°,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABC=45°,∴∠BCE=90°,∴點E的運動軌跡是在射線CE上,當OE⊥CE時,OE的長最短,易知OE的最小值為,故答案為.【點睛】本題考查的知識點是正方形的旋轉問題,主要是利用相似三角形性質和全等三角形的性質來求證線段間的等量關系,弄清題意,作出合適的輔助線是解題的關鍵.20、水面寬度增加了(2﹣4)米【分析】根據已知建立直角坐標系,進而求出二次函數解析式,再通過把y=-1代入拋物線解析式得出水面寬度,即可得出答案.【詳解】解:建立平面直角坐標系,設橫軸x通過AB,縱軸y通過AB中點O且通過C點,則通過畫圖可得知O為原點,拋物線以y軸為對稱軸,且經過A,B兩點,OA和OB可求出為AB的一半2米,拋物線頂點C坐標為(0,2),設頂點式y=ax2+2,代入A點坐標(﹣2,0),得出:a=﹣0.5,所以拋物線解析式為y=﹣0.5x2+2,當水面下降1米,通過拋物線在圖上的觀察可轉化為:當y=﹣1時,對應的拋物線上兩點之間的距離,也就是直線y=﹣1與拋物線相交的兩點之間的距離,可以通過把y=﹣1代入拋物線解析式得出:﹣1=﹣0.5x2+2,解得:x=±,所以水面寬度增加了(2﹣4)米.【點睛】此題考查的是二次函數的應用,建立適當的坐標系,利用待定系數法求二次函數的解析式是解決此題的關鍵.21、12.1m.【分析】首先根據題意分析圖形,本題涉及到兩個直角三角形,分別解可得BG與EF的大小,進而求得BE、AE的大小,再利用AB=BE-AE可求出答案.【詳解】解:作DG⊥AE于G,則∠BDG=α,易知四邊形DCEG為矩形.∴DG=CE=35m,EG=DC=1.6m在直角三角形BDG中,BG=DG?×tanα=35×=15m,∴BE=15+1.6=16.6m.∵斜坡FC的坡比為iFC=1:10,CE=35m,∴EF=35×=3.5,∵AF=1,∴AE=AF+EF=1+3.5=4.5,∴AB=BE-AE=16.6-4.5=12.1m.答:旗桿AB的高度為12.1m.【點睛】本題考查解直角三角形的應用-仰角俯角問題;解直角三角形的應用-坡度坡角問題.22、(1);(2),點坐標為;(3)點的坐標為,【分析】(1)利用B(5,0)用待定系數法求拋物線解析式;(2)作PQ∥y軸交BC于Q,根據求解即可;(3)作∠CAN=∠NAM1=∠ACB,則∠AM1B=3∠ACB,則NAM1∽ACM1,通過相似的性質來求點M1的坐標;作AD⊥BC于D,作M1關于AD的對稱點M2,則∠AM2C=3∠ACB,根據對稱點坐標特點可求M2的坐標.【詳解】(1)把代入得.∴;(2)作PQ∥y軸交BC于Q,設點,則∵∴OB=5,∵Q在BC上,∴Q的坐標為(x,x-5),∴PQ==,∴==∴當時,有最大值,最大值為,∴點坐標為.(3)如圖1,作∠CAN=∠NAM1=∠ACB,則∠AM1B=3∠ACB,∵∠CAN=∠NAM1,∴AN=CN,∵=-(x-1)(x-5),∴A的坐標為(1,0),C的坐標為(0,-5),設N的坐標為(a,a-5),則∴,∴a=,∴N的坐標為(,),∴AN2==,AC2=26,∴,∵∠NAM1=∠ACB,∠NM1A=∠CM1A,∴NAM1∽ACM1,∴,∴,設M1的坐標為(b,b-5),則∴,∴b1=,b2=6(不合題意,舍去),∴M1的坐標為,如圖2,作AD⊥BC于D,作M1關于AD的對稱點M2,則∠AM2C=3∠ACB,易知ADB是等腰直角三角形,可得點D的坐標是(3,-2),∴M2橫坐標=,M2縱坐標=,∴M2的坐標是,綜上所述,點M的坐標是或.【點睛】本題考查了二次函數與幾何圖形的綜合題:熟練掌握二次函數圖象上點的坐標特征、二次函數的性質及相似三角形的判定與性質,會運用分類討論的思想解決數學問題.23、(1)見解析;(2)見解析.【解析】(1)由平行線的性質可得,根據EF經過點O且垂直平分BD可得,利用ASA可證明△DOA≌△BOC,可得OA=OC,即可證明四邊形ABCD為平行四邊形;(2)利用ASA可證明≌,可得OE=OF,根據對角線互相垂直且平分的四邊形是菱形即可得結論.【詳解】(1)∵AD//BC,經過點O,且垂直平分,∴,,在和中,∴≌,∴OA=OC,∴四邊形為平行四邊形.(2)由(1)知,,∴在和中,∴≌,∴,∵垂直平分,∴,,∴四邊形為菱形.【點睛】本題考查平行四邊形的判定及菱形的判定,有一組對邊平行且相等的四邊形是平行四邊形;對角線互相垂直且平分的四邊形是菱形;熟練掌握判定定理是解題關鍵.24、(1)AD=10,BD=10;(2)見解析;(3)AG=.【分析】(1)由可證明△ABC∽△DAC,通過相似比即可求出AD,BD的長;(2)由(1)可證明∠B=∠DAB,再根據已知條件證明∠AFC=∠BEF即可;(3)過點C作CH∥AB,交AD的延長線于點H,根據平行線的性質得到,計算出CH和AH的值,由已知條件得到≌,設AG=x,則AF=15-x,HG=18-x,再由平行線的性質得到,表達出即可解出x,即AG的值.【詳解】解:(1)∵,∴,又∵∠ACB=∠DCA,∴△ABC∽△DAC,∴,即,解得:CD=8,AD=10,∴BD=BC-CD=18-8=10,∴AD=10,BD=10;(2)由(1)可知,AD=BD=10,∴∠B=∠DAB,∵∠AFE=∠B+∠BEF,∴∠AFC+∠CFE=∠B+∠BEF,∵,∴∠AFC=∠BEF,又∵∠B=∠DAB,∴~;(3)如圖,過點C作CH∥AB,交AD的延長線于點H,∴,即,解得:CH=12,HD=8,∴AH=AD+HD=18,若,則≌;∴BF=AG,設AG=x,則AF=15-x,HG=18-x,∵CH∥AB,∴,即,解得:,(舍去)∴AG=.【點睛】本題考查了相似三角形的判定與性質以及平行線分線段成比例,解題的關鍵是熟悉相似三角形的判定,并靈活作出輔助線.25、(1)2017年底至2019年底該市汽車
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 預檢分診考試試題及答案
- 供電方案編制管理制度
- 供餐電梯設備管理制度
- 便民驛站服務管理制度
- 保安公司消防管理制度
- 保安公司高層管理制度
- 保安宿舍安全管理制度
- 保安職業衛生管理制度
- 保潔主管怎樣管理制度
- 保潔公司人事管理制度
- 2024年黃岡團風縣招聘城區社區工作者真題
- 2025圖解《政務數據共享條例》V1.0學習解讀
- 2025電商平臺店鋪轉讓合同模板
- 2025年人教版(2024)初中英語七年級下冊期末考試測試卷及答案
- (2025)事業編考試題庫(附含答案)
- 女性美學課堂企業制定與實施新質生產力項目商業計劃書
- 高端私人定制服務方案
- 2025年保密知識競賽考試題庫300題(含答案)
- 部編版2024-2025學年四年級下冊語文期末測試卷(含答案)
- 2025年醫保政策考試題庫及答案:基礎解讀與醫保政策法規試題試卷
- 2025至2030年中國液化設備行業投資前景及策略咨詢研究報告
評論
0/150
提交評論