2024屆吉林省長春市第151中學高三元月聯考數學試題_第1頁
2024屆吉林省長春市第151中學高三元月聯考數學試題_第2頁
2024屆吉林省長春市第151中學高三元月聯考數學試題_第3頁
2024屆吉林省長春市第151中學高三元月聯考數學試題_第4頁
2024屆吉林省長春市第151中學高三元月聯考數學試題_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆吉林省長春市第151中學高三元月聯考數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數fxA. B.C. D.2.已知角的頂點與坐標原點重合,始邊與軸的非負半軸重合,它的終邊過點,則的值為()A. B. C. D.3.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準線上的一點,則的面積為()A.1 B.2 C.4 D.84.已知雙曲線的一條漸近線傾斜角為,則()A.3 B. C. D.5.一個袋中放有大小、形狀均相同的小球,其中紅球1個、黑球2個,現隨機等可能取出小球,當有放回依次取出兩個小球時,記取出的紅球數為;當無放回依次取出兩個小球時,記取出的紅球數為,則()A., B.,C., D.,6.要得到函數的圖象,只需將函數的圖象A.向左平移個單位長度B.向右平移個單位長度C.向左平移個單位長度D.向右平移個單位長度7.已知、分別是雙曲線的左、右焦點,過作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點、,過點作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.8.已知平面,,直線滿足,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件9.若的展開式中二項式系數和為256,則二項式展開式中有理項系數之和為()A.85 B.84 C.57 D.5610.是平面上的一定點,是平面上不共線的三點,動點滿足,,則動點的軌跡一定經過的()A.重心 B.垂心 C.外心 D.內心11.在長方體中,,則直線與平面所成角的余弦值為()A. B. C. D.12.已知類產品共兩件,類產品共三件,混放在一起,現需要通過檢測將其區分開來,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件類產品或者檢測出3件類產品時,檢測結束,則第一次檢測出類產品,第二次檢測出類產品的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等比數列中,,則________.14.在中,、的坐標分別為,,且滿足,為坐標原點,若點的坐標為,則的取值范圍為__________.15.過拋物線C:()的焦點F且傾斜角為銳角的直線l與C交于A,B兩點,過線段的中點N且垂直于l的直線與C的準線交于點M,若,則l的斜率為______.16.復數(其中i為虛數單位)的共軛復數為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數u(x)=xlnx,v(x)x﹣1,m∈R.(1)令m=2,求函數h(x)的單調區間;(2)令f(x)=u(x)﹣v(x),若函數f(x)恰有兩個極值點x1,x2,且滿足1e(e為自然對數的底數)求x1?x2的最大值.18.(12分)如圖,在四棱錐中,四邊形為正方形,平面,點是棱的中點,,.(1)若,證明:平面平面;(2)若三棱錐的體積為,求二面角的余弦值.19.(12分)已知直線:(為參數),曲線(為參數).(1)設與相交于,兩點,求;(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線距離的最小值.20.(12分)秉持“綠水青山就是金山銀山”的生態文明發展理念,為推動新能源汽車產業迅速發展,有必要調查研究新能源汽車市場的生產與銷售.下圖是我國某地區年至年新能源汽車的銷量(單位:萬臺)按季度(一年四個季度)統計制成的頻率分布直方圖.(1)求直方圖中的值,并估計銷量的中位數;(2)請根據頻率分布直方圖估計新能源汽車平均每個季度的銷售量(同一組數據用該組中間值代表),并以此預計年的銷售量.21.(12分)若不等式在時恒成立,則的取值范圍是__________.22.(10分)選修4-5:不等式選講已知函數f(x)=log2(|x+1|+|x﹣2|﹣m).(1)當m=7時,求函數f(x)的定義域;(2)若關于x的不等式f(x)≥2的解集是R,求m的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】

由f12=e-14>0排除選項D;【題目詳解】由f12=e-14>0,可排除選項D,f-1=-e【題目點撥】本題通過對多個圖象的選擇考查函數的圖象與性質,屬于中檔題.這類題型也是近年高考常見的命題方向,該題型的特點是綜合性較強、考查知識點較多,但是并不是無路可循.解答這類題型可以從多方面入手,根據函數的定義域、值域、單調性、奇偶性、特殊點以及x→02、B【解題分析】

根據三角函數定義得到,故,再利用和差公式得到答案.【題目詳解】∵角的終邊過點,∴,.∴.故選:.【題目點撥】本題考查了三角函數定義,和差公式,意在考查學生的計算能力.3、C【解題分析】

設拋物線的解析式,得焦點為,對稱軸為軸,準線為,這樣可設點坐標為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【題目詳解】設拋物線的解析式,則焦點為,對稱軸為軸,準線為,∵直線經過拋物線的焦點,,是與的交點,又軸,∴可設點坐標為,代入,解得,又∵點在準線上,設過點的的垂線與交于點,,∴.故應選C.【題目點撥】本題考查拋物線的性質,解題時只要設出拋物線的標準方程,就能得出點坐標,從而求得參數的值.本題難度一般.4、D【解題分析】

由雙曲線方程可得漸近線方程,根據傾斜角可得漸近線斜率,由此構造方程求得結果.【題目詳解】由雙曲線方程可知:,漸近線方程為:,一條漸近線的傾斜角為,,解得:.故選:.【題目點撥】本題考查根據雙曲線漸近線傾斜角求解參數值的問題,關鍵是明確直線傾斜角與斜率的關系;易錯點是忽略方程表示雙曲線對于的范圍的要求.5、B【解題分析】

分別求出兩個隨機變量的分布列后求出它們的期望和方差可得它們的大小關系.【題目詳解】可能的取值為;可能的取值為,,,,故,.,,故,,故,.故選B.【題目點撥】離散型隨機變量的分布列的計算,應先確定隨機變量所有可能的取值,再利用排列組合知識求出隨機變量每一種取值情況的概率,然后利用公式計算期望和方差,注意在取球模型中摸出的球有放回與無放回的區別.6、D【解題分析】

先將化為,根據函數圖像的平移原則,即可得出結果.【題目詳解】因為,所以只需將的圖象向右平移個單位.【題目點撥】本題主要考查三角函數的平移,熟記函數平移原則即可,屬于基礎題型.7、B【解題分析】

設點位于第二象限,可求得點的坐標,再由直線與直線垂直,轉化為兩直線斜率之積為可得出的值,進而可求得雙曲線的離心率.【題目詳解】設點位于第二象限,由于軸,則點的橫坐標為,縱坐標為,即點,由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.【題目點撥】本題考查雙曲線離心率的計算,解答的關鍵就是得出、、的等量關系,考查計算能力,屬于中等題.8、A【解題分析】

,是相交平面,直線平面,則“”“”,反之,直線滿足,則或//或平面,即可判斷出結論.【題目詳解】解:已知直線平面,則“”“”,反之,直線滿足,則或//或平面,“”是“”的充分不必要條件.故選:A.【題目點撥】本題考查了線面和面面垂直的判定與性質定理、簡易邏輯的判定方法,考查了推理能力與計算能力.9、A【解題分析】

先求,再確定展開式中的有理項,最后求系數之和.【題目詳解】解:的展開式中二項式系數和為256故,要求展開式中的有理項,則則二項式展開式中有理項系數之和為:故選:A【題目點撥】考查二項式的二項式系數及展開式中有理項系數的確定,基礎題.10、B【解題分析】

解出,計算并化簡可得出結論.【題目詳解】λ(),∴,∴,即點P在BC邊的高上,即點P的軌跡經過△ABC的垂心.故選B.【題目點撥】本題考查了平面向量的數量積運算在幾何中的應用,根據條件中的角計算是關鍵.11、C【解題分析】

在長方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結論.【題目詳解】在長方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【題目點撥】本題考查直線與平面所成的角,定義法求空間角要體現“做”“證”“算”,三步驟缺一不可,屬于基礎題.12、D【解題分析】

根據分步計數原理,由古典概型概率公式可得第一次檢測出類產品的概率,不放回情況下第二次檢測出類產品的概率,即可得解.【題目詳解】類產品共兩件,類產品共三件,則第一次檢測出類產品的概率為;不放回情況下,剩余4件產品,則第二次檢測出類產品的概率為;故第一次檢測出類產品,第二次檢測出類產品的概率為;故選:D.【題目點撥】本題考查了分步乘法計數原理的應用,古典概型概率計算公式的應用,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解題分析】

設等比數列的公比為,再根據題意用基本量法求解公比,進而利用等比數列項之間的關系得即可.【題目詳解】設等比數列的公比為.由,得,解得.又由,得.則.故答案為:1【題目點撥】本題主要考查了等比數列基本量的求解方法,屬于基礎題.14、【解題分析】

由正弦定理可得點在曲線上,設,則,將代入可得,利用二次函數的性質可得范圍.【題目詳解】解:由正弦定理得,則點在曲線上,設,則,,又,,因為,則,即的取值范圍為.故答案為:.【題目點撥】本題考查雙曲線的定義,考查向量數量積的坐標運算,考查學生計算能力,有一定的綜合性,但難度不大.15、【解題分析】

分別過A,B,N作拋物線的準線的垂線,垂足分別為,,,根據拋物線定義和求得,從而求得直線l的傾斜角.【題目詳解】分別過A,B,N作拋物線的準線的垂線,垂足分別為,,,由拋物線的定義知,,,因為,所以,所以,即直線的傾斜角為,又直線與直線l垂直且直線l的傾斜角為銳角,所以直線l的傾斜角為,.故答案為:【題目點撥】此題考查拋物線的定義,根據已知條件做出輔助線利用拋物線定義和幾何關系即可求解,屬于較易題目.16、【解題分析】

利用復數的乘法運算求出,再利用共軛復數的概念即可求解.【題目詳解】由,則.故答案為:【題目點撥】本題考查了復數的四則運算以及共軛復數的概念,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)單調遞增區間是(0,e),單調遞減區間是(e,+∞)(2)【解題分析】

(1)化簡函數h(x),求導,根據導數和函數的單調性的關系即可求出(2)函數f(x)恰有兩個極值點x1,x2,則f′(x)=lnx﹣mx=0有兩個正根,由此得到m(x2﹣x1)=lnx2﹣lnx1,m(x2+x1)=lnx2+lnx1,消參數m化簡整理可得ln(x1x2)=ln?,設t,構造函數g(t)=()lnt,利用導數判斷函數的單調性,求出函數的最大值即可求出x1?x2的最大值.【題目詳解】(1)令m=2,函數h(x),∴h′(x),令h′(x)=0,解得x=e,∴當x∈(0,e)時,h′(x)>0,當x∈(e,+∞)時,h′(x)<0,∴函數h(x)單調遞增區間是(0,e),單調遞減區間是(e,+∞)(2)f(x)=u(x)﹣v(x)=xlnxx+1,∴f′(x)=1+lnx﹣mx﹣1=lnx﹣mx,∵函數f(x)恰有兩個極值點x1,x2,∴f′(x)=lnx﹣mx=0有兩個不等正根,∴lnx1﹣mx1=0,lnx2﹣mx2=0,兩式相減可得lnx2﹣lnx1=m(x2﹣x1),兩式相加可得m(x2+x1)=lnx2+lnx1,∴∴ln(x1x2)=ln?,設t,∵1e,∴1<t≤e,設g(t)=()lnt,∴g′(t),令φ(t)=t2﹣1﹣2tlnt,∴φ′(t)=2t﹣2(1+lnt)=2(t﹣1﹣lnt),再令p(t)=t﹣1﹣lnt,∴p′(t)=10恒成立,∴p(t)在(1,e]單調遞增,∴φ′(t)=p(t)>p(1)=1﹣1﹣ln1=0,∴φ(t)在(1,e]單調遞增,∴g′(t)=φ(t)>φ(1)=1﹣1﹣2ln1=0,∴g(t)在(1,e]單調遞增,∴g(t)max=g(e),∴ln(x1x2),∴x1x2故x1?x2的最大值為.【題目點撥】本題考查了利用導數求函數的最值和最值,考查了函數與方程的思想,轉化與化歸思想,屬于難題18、(1)見解析(2)【解題分析】

(1)由已知可證得平面,則有,在中,由已知可得,即可證得平面,進而證得結論.(2)過作交于,由為的中點,結合已知有平面.則,可求得.建立坐標系分別求得面的法向量,平面的一個法向量為,利用公式即可求得結果.【題目詳解】(1)證明:平面,平面,,又四邊形為正方形,.又、平面,且,平面..中,,為的中點,.又、平面,,平面.平面,平面平面.(2)解:過作交于,如圖為的中點,,.又平面,平面.,.所以,又、、兩兩互相垂直,以、、為坐標軸建立如圖所示的空間直角坐標系.,,,設平面的法向量,則,即.令,則,..平面的一個法向量為.二面角的余弦值為.【題目點撥】本題考查面面垂直的證明方法,考查了空間線線、線面、面面位置關系,考查利用向量法求二面角的方法,難度一般.19、(1);(2).【解題分析】

(1)將直線和曲線化為普通方程,聯立直線和曲線,可得交點坐標,可得的值;(2)可得曲線的參數方程,利用點到直線的距離公式結合三角形的最值可得答案.【題目詳解】解:(1)直線的普通方程為,的普通方程.聯立方程組,解得與的交點為,,則.(2)曲線的參數方程為(為參數),故點的坐標為,從而點到直線的距離是,由此當時,取得最小值,且最小值為.【題目點撥】本題主要考查參數方程與普通方程的轉化及參數方程的基本性質、點到直線的距離公式等,屬于中檔題.20、(1),中位數為;(2)新能源汽車平均每個季度的銷售量為萬臺,以此預計年的銷售量約為萬臺.【解題分析】

(1)根據頻率分布直方圖中所有矩形面積之和為可計算出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論