




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆貴州省貴陽市清鎮北大培文學校貴州校區高三模擬卷(一)數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.2.已知是虛數單位,若,,則實數()A.或 B.-1或1 C.1 D.3.年部分省市將實行“”的新高考模式,即語文、數學、英語三科必選,物理、歷史二選一,化學、生物、政治、地理四選二,若甲同學選科沒有偏好,且不受其他因素影響,則甲同學同時選擇歷史和化學的概率為A. B.C. D.4.已知直線和平面,若,則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.不充分不必要5.數列滿足,且,,則()A. B.9 C. D.76.如圖,正方體的底面與正四面體的底面在同一平面上,且,若正方體的六個面所在的平面與直線相交的平面個數分別記為,則下列結論正確的是()A. B. C. D.7.若sin(α+3π2A.-12 B.-138.在“一帶一路”知識測驗后,甲、乙、丙三人對成績進行預測.甲:我的成績比乙高.乙:丙的成績比我和甲的都高.丙:我的成績比乙高.成績公布后,三人成績互不相同且只有一個人預測正確,那么三人按成績由高到低的次序為A.甲、乙、丙 B.乙、甲、丙C.丙、乙、甲 D.甲、丙、乙9.已知四棱錐,底面ABCD是邊長為1的正方形,,平面平面ABCD,當點C到平面ABE的距離最大時,該四棱錐的體積為()A. B. C. D.110.設,,則“”是“”的A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件11.如下的程序框圖的算法思路源于我國古代數學名著《九章算術》中的“更相減損術”.執行該程序框圖,若輸入的a,b分別為176,320,則輸出的a為()A.16 B.18 C.20 D.1512.如圖,網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的表面積()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,圓,直線PM,PN分別與圓O相切,切點為M,N,若,則的最小值為________.14.已知,則的值為______.15.在中,,.若,則_________.16.若實數x,y滿足不等式組x+y-4≤0,2x-3y-8≤0,x≥1,則目標函數三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為增強學生的法治觀念,營造“學憲法、知憲法、守憲法”的良好校園氛圍,某學校開展了“憲法小衛士”活動,并組織全校學生進行法律知識競賽.現從全校學生中隨機抽取50名學生,統計他們的競賽成績,已知這50名學生的競賽成績均在[50,100]內,并得到如下的頻數分布表:分數段[50,60)[60,70)[70,80)[80,90)[90,100]人數51515123(1)將競賽成績在內定義為“合格”,競賽成績在內定義為“不合格”.請將下面的列聯表補充完整,并判斷是否有的把握認為“法律知識競賽成績是否合格”與“是否是高一新生”有關?合格不合格合計高一新生12非高一新生6合計(2)在(1)的前提下,按“競賽成績合格與否”進行分層抽樣,從這50名學生中抽取5名學生,再從這5名學生中隨機抽取2名學生,求這2名學生競賽成績都合格的概率.參考公式及數據:,其中.18.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,已知a=4,.(1)求A的余弦值;(2)求△ABC面積的最大值.19.(12分)的內角,,的對邊分別為,,,已知的面積為.(1)求;(2)若,,求的周長.20.(12分)已知曲線的極坐標方程為,直線的參數方程為(為參數).(1)求曲線的直角坐標方程與直線的普通方程;(2)已知點,直線與曲線交于、兩點,求.21.(12分)如圖,在棱長為的正方形中,,分別為,邊上的中點,現以為折痕將點旋轉至點的位置,使得為直二面角.(1)證明:;(2)求與面所成角的正弦值.22.(10分)在直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)寫出直線的普通方程和曲線的直角坐標方程;(2)設直線與曲線相交于兩點,的頂點也在曲線上運動,求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解題分析】
畫出約束條件的可行域,利用目標函數的最值,判斷a的范圍即可.【題目詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【題目點撥】本題主要考查線性規劃的應用,利用z的幾何意義,通過數形結合是解決本題的關鍵.2、B【解題分析】
由題意得,,然后求解即可【題目詳解】∵,∴.又∵,∴,∴.【題目點撥】本題考查復數的運算,屬于基礎題3、B【解題分析】
甲同學所有的選擇方案共有種,甲同學同時選擇歷史和化學后,只需在生物、政治、地理三科中再選擇一科即可,共有種選擇方案,根據古典概型的概率計算公式,可得甲同學同時選擇歷史和化學的概率,故選B.4、B【解題分析】
由線面關系可知,不能確定與平面的關系,若一定可得,即可求出答案.【題目詳解】,不能確定還是,,當時,存在,,由又可得,所以“”是“”的必要不充分條件,故選:B【題目點撥】本題主要考查了必要不充分條件,線面垂直,線線垂直的判定,屬于中檔題.5、A【解題分析】
先由題意可得數列為等差數列,再根據,,可求出公差,即可求出.【題目詳解】數列滿足,則數列為等差數列,,,,,,,故選:.【題目點撥】本題主要考查了等差數列的性質和通項公式的求法,意在考查學生對這些知識的理解掌握水平,屬于基礎題.6、A【解題分析】
根據題意,畫出幾何位置圖形,由圖形的位置關系分別求得的值,即可比較各選項.【題目詳解】如下圖所示,平面,從而平面,易知與正方體的其余四個面所在平面均相交,∴,∵平面,平面,且與正方體的其余四個面所在平面均相交,∴,∴結合四個選項可知,只有正確.故選:A.【題目點撥】本題考查了空間幾何體中直線與平面位置關系的判斷與綜合應用,對空間想象能力要求較高,屬于中檔題.7、B【解題分析】
由三角函數的誘導公式和倍角公式化簡即可.【題目詳解】因為sinα+3π2=3故選B【題目點撥】本題考查了三角函數的誘導公式和倍角公式,靈活掌握公式是關鍵,屬于基礎題.8、A【解題分析】
利用逐一驗證的方法進行求解.【題目詳解】若甲預測正確,則乙、丙預測錯誤,則甲比乙成績高,丙比乙成績低,故3人成績由高到低依次為甲,乙,丙;若乙預測正確,則丙預測也正確,不符合題意;若丙預測正確,則甲必預測錯誤,丙比乙的成績高,乙比甲成績高,即丙比甲,乙成績都高,即乙預測正確,不符合題意,故選A.【題目點撥】本題將數學知識與時政結合,主要考查推理判斷能力.題目有一定難度,注重了基礎知識、邏輯推理能力的考查.9、B【解題分析】
過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.設,將表示成關于的函數,再求函數的最值,即可得答案.【題目詳解】過點E作,垂足為H,過H作,垂足為F,連接EF.因為平面平面ABCD,所以平面ABCD,所以.因為底面ABCD是邊長為1的正方形,,所以.因為平面ABE,所以點C到平面ABE的距離等于點H到平面ABE的距離.易證平面平面ABE,所以點H到平面ABE的距離,即為H到EF的距離.不妨設,則,.因為,所以,所以,當時,等號成立.此時EH與ED重合,所以,.故選:B.【題目點撥】本題考查空間中點到面的距離的最值,考查函數與方程思想、轉化與化歸思想,考查空間想象能力和運算求解能力,求解時注意輔助線及面面垂直的應用.10、A【解題分析】
根據對數的運算分別從充分性和必要性去證明即可.【題目詳解】若,,則,可得;若,可得,無法得到,所以“”是“”的充分而不必要條件.所以本題答案為A.【題目點撥】本題考查充要條件的定義,判斷充要條件的方法是:①若為真命題且為假命題,則命題p是命題q的充分不必要條件;②若為假命題且為真命題,則命題p是命題q的必要不充分條件;③若為真命題且為真命題,則命題p是命題q的充要條件;④若為假命題且為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.11、A【解題分析】
根據題意可知最后計算的結果為的最大公約數.【題目詳解】輸入的a,b分別為,,根據流程圖可知最后計算的結果為的最大公約數,按流程圖計算,,,,,,,易得176和320的最大公約數為16,故選:A.【題目點撥】本題考查的是利用更相減損術求兩個數的最大公約數,難度較易.12、C【解題分析】
畫出幾何體的直觀圖,利用三視圖的數據求解幾何體的表面積即可.【題目詳解】解:幾何體的直觀圖如圖,是正方體的一部分,P?ABC,正方體的棱長為2,
該幾何體的表面積:.故選C.【題目點撥】本題考查三視圖求解幾何體的直觀圖的表面積,判斷幾何體的形狀是解題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
由可知R為中點,設,由過切點的切線方程即可求得,,代入,,則在直線上,即可得方程為,將,代入化簡可得,則直線過定點,由則點在以為直徑的圓上,則.即可求得.【題目詳解】如圖,由可知R為MN的中點,所以,,設,則切線PM的方程為,即,同理可得,因為PM,PN都過,所以,,所以在直線上,從而直線MN方程為,因為,所以,即直線MN方程為,所以直線MN過定點,所以R在以OQ為直徑的圓上,所以.故答案為:.【題目點撥】本題考查直線和圓的位置關系,考查圓的切線方程,定點和圓上動點距離的最值問題,考查學生的數形結合能力和計算能力,難度較難.14、【解題分析】
先求,再根據的范圍求出即可.【題目詳解】由題可知,故.故答案為:.【題目點撥】本題考查分段函數函數值的求解,涉及對數的運算,屬基礎題.15、【解題分析】分析:首先設出相應的直角邊長,利用余弦勾股定理得到相應的斜邊長,之后應用余弦定理得到直角邊長之間的關系,從而應用正切函數的定義,對邊比臨邊,求得對應角的正切值,即可得結果.詳解:根據題意,設,則,根據,得,由勾股定理可得,根據余弦定理可得,化簡整理得,即,解得,所以,故答案是.點睛:該題考查的是有關解三角形的問題,在解題的過程中,注意分析要求對應角的正切值,需要求誰,而題中所給的條件與對應的結果之間有什么樣的連線,設出直角邊長,利用所給的角的余弦值,利用余弦定理得到相應的等量關系,求得最后的結果.16、12【解題分析】
畫出約束條件的可行域,求出最優解,即可求解目標函數的最大值.【題目詳解】根據約束條件畫出可行域,如下圖,由x+y-4=02x-3y-8=0,解得目標函數y=3x-z,當y=3x-z過點(4,0)時,z有最大值,且最大值為12.故答案為:12.【題目點撥】本題考查線性規劃的簡單應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解題分析】
(1)補充完整的列聯表如下:合格不合格合計高一新生121426非高一新生18624合計302050則的觀測值,所以有的把握認為“法律知識競賽成績是否合格”與“是否是高一新生”有關.(2)抽取的5名學生中競賽成績合格的有名學生,記為,競賽成績不合格的有名學生,記為,從這5名學生中隨機抽取2名學生的基本事件有:,共10種,這2名學生競賽成績都合格的基本事件有:,共3種,所以這2名學生競賽成績都合格的概率為.18、(1);(2)【解題分析】
(1)根據正弦定理化簡得到,故,得到答案.(2)計算,再利用面積公式計算得到答案.【題目詳解】(1),則,即,故,,故.(2),故,故.當時等號成立.,故,,故△ABC面積的最大值為.【題目點撥】本題考查了正弦定理,面積公式,均值不等式,意在考查學生的綜合應用能力.19、(1)(2)【解題分析】
(1)根據三角形面積公式和正弦定理可得答案;(2)根據兩角余弦公式可得,即可求出,再根據正弦定理可得,根據余弦定理即可求出,問題得以解決.【題目詳解】(1)由三角形的面積公式可得,,由正弦定理可得,,;(2),,,,,則由,可得:,由,可得:,,可得:,經檢驗符合題意,三角形的周長.(實際上可解得,符合三邊關系).【題目點撥】本題考查了三角形的面積公式、兩角和的余弦公式、誘導公式,考查正弦定理,余弦定理在解三角形中的綜合應用,考查了學生的運算能力,考查了轉化思想,屬于中檔題.20、(1).(2)【解題分析】
(1)根據極坐標與直角坐標互化公式,以及消去參數,即可求解;(2)設兩點對應的參數分別為,,將直線的參數方程代入曲線方程,結合根與系數的關系,即可求解.【題目詳解】(1)對于曲線的極坐標方程為,可得,又由,可得,即,所以曲線的普通方程為.由直線的參數方程為(為參數),消去參數可得,即直線的方程為,即.(2)設兩點對應的參數分別為,,將直線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 工藝整頓活動方案
- 山西省各式慶祝活動方案
- 小班勞動沙龍活動方案
- 小小兒童詩仿寫活動方案
- 少兒線下活動方案
- 師生元旦活動方案
- 小報繪制活動方案
- 小雞體能活動方案
- 小雪商家活動策劃方案
- 工會立秋活動方案
- 國家開放大學電大專科《市場營銷學》2021期末試題及答案(試卷號2175)
- 孕產期保健管理及工作規范(喀什)
- 再遇青春同學聚會畫冊PPT模板
- 二、施組報審表
- 無砟軌道底座板首件施工總結(最新)
- 油藏數值模擬中幾種主要的數學模型
- 湖南省高等教育自學考試畢業生登記表(共5頁)
- 200立方米谷氨酸發酵罐設計
- 多媒體給農村初中語文教學注入了活力
- 白酒生產企業安全生產標準化評定標準
- 客戶資信評估程序及方法(共5頁).doc
評論
0/150
提交評論