2024屆云南省陸良縣高三數學試題大練習(一)_第1頁
2024屆云南省陸良縣高三數學試題大練習(一)_第2頁
2024屆云南省陸良縣高三數學試題大練習(一)_第3頁
2024屆云南省陸良縣高三數學試題大練習(一)_第4頁
2024屆云南省陸良縣高三數學試題大練習(一)_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆云南省陸良縣高三數學試題大練習(一)注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執行如圖所示的程序框圖,若輸出的,則①處應填寫()A. B. C. D.2.已知數列滿足,且成等比數列.若的前n項和為,則的最小值為()A. B. C. D.3.等比數列的各項均為正數,且,則()A.12 B.10 C.8 D.4.已知函數,若所有點,所構成的平面區域面積為,則()A. B. C.1 D.5.如圖1,《九章算術》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現被風折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.6.已知偶函數在區間內單調遞減,,,,則,,滿足()A. B. C. D.7.設實數x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.48.根據最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關系數為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關9.設,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.若復數滿足,則()A. B. C.2 D.11.設遞增的等比數列的前n項和為,已知,,則()A.9 B.27 C.81 D.12.已知三棱錐中,為的中點,平面,,,則有下列四個結論:①若為的外心,則;②若為等邊三角形,則;③當時,與平面所成的角的范圍為;④當時,為平面內一動點,若OM∥平面,則在內軌跡的長度為1.其中正確的個數是().A.1 B.1 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數為____.14.已知為橢圓內一定點,經過引一條弦,使此弦被點平分,則此弦所在的直線方程為________________.15.若函數(a>0且a≠1)在定義域[m,n]上的值域是[m2,n2](1<m<n),則a的取值范圍是_______.16.設實數,滿足,則的最大值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)證明:當時,;(2)若函數有三個零點,求實數的取值范圍.18.(12分)已知橢圓與x軸負半軸交于,離心率.(1)求橢圓C的方程;(2)設直線與橢圓C交于兩點,連接AM,AN并延長交直線x=4于兩點,若,直線MN是否恒過定點,如果是,請求出定點坐標,如果不是,請說明理由.19.(12分)過點P(-4,0)的動直線l與拋物線相交于D、E兩點,已知當l的斜率為時,.(1)求拋物線C的方程;(2)設的中垂線在軸上的截距為,求的取值范圍.20.(12分)已知,且的解集為.(1)求實數,的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實數取值范圍.21.(12分)的內角的對邊分別為,且.(1)求;(2)若,點為邊的中點,且,求的面積.22.(10分)已知A是拋物線E:y2=2px(p>0)上的一點,以點A和點B(2,0)為直徑兩端點的圓C交直線x=1于M,N兩點.(1)若|MN|=2,求拋物線E的方程;(2)若0<p<1,拋物線E與圓(x﹣5)2+y2=9在x軸上方的交點為P,Q,點G為PQ的中點,O為坐標原點,求直線OG斜率的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】

模擬程序框圖運行分析即得解.【題目詳解】;;.所以①處應填寫“”故選:B【題目點撥】本題主要考查程序框圖,意在考查學生對這些知識的理解掌握水平.2、D【解題分析】

利用等比中項性質可得等差數列的首項,進而求得,再利用二次函數的性質,可得當或時,取到最小值.【題目詳解】根據題意,可知為等差數列,公差,由成等比數列,可得,∴,解得.∴.根據單調性,可知當或時,取到最小值,最小值為.故選:D.【題目點撥】本題考查等差數列通項公式、等比中項性質、等差數列前項和的最值,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當或時同時取到最值.3、B【解題分析】

由等比數列的性質求得,再由對數運算法則可得結論.【題目詳解】∵數列是等比數列,∴,,∴.故選:B.【題目點撥】本題考查等比數列的性質,考查對數的運算法則,掌握等比數列的性質是解題關鍵.4、D【解題分析】

依題意,可得,在上單調遞增,于是可得在上的值域為,繼而可得,解之即可.【題目詳解】解:,因為,,所以,在上單調遞增,則在上的值域為,因為所有點所構成的平面區域面積為,所以,解得,故選:D.【題目點撥】本題考查利用導數研究函數的單調性,理解題意,得到是關鍵,考查運算能力,屬于中檔題.5、B【解題分析】如圖,已知,,

∴,解得

,∴,解得

.∴折斷后的竹干高為4.55尺故選B.6、D【解題分析】

首先由函數為偶函數,可得函數在內單調遞增,再由,即可判定大小【題目詳解】因為偶函數在減,所以在上增,,,,∴.故選:D【題目點撥】本題考查函數的奇偶性和單調性,不同類型的數比較大小,應找一個中間數,通過它實現大小關系的傳遞,屬于中檔題.7、C【解題分析】

畫出可行域和目標函數,根據目標函數的幾何意義平移得到答案.【題目詳解】如圖所示:畫出可行域和目標函數,z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據圖像知,當x+y=2時,且x∈-13,1時,故選:C.【題目點撥】本題考查了線性規劃問題,畫出圖像是解題的關鍵.8、D【解題分析】

對每一個選項逐一分析判斷得解.【題目詳解】回歸直線必過樣本數據中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關系數為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關系數r與符號相同,若回歸直線的斜率,則,樣本點分布應從左到右是上升的,則變量x與y正相關,故D正確.故選D.【題目點撥】本題主要考查線性回歸方程的性質,意在考查學生對該知識的理解掌握水平和分析推理能力.9、C【解題分析】

根據充分條件和必要條件的定義結合對數的運算進行判斷即可.【題目詳解】∵a,b∈(1,+∞),∴a>b?logab<1,logab<1?a>b,∴a>b是logab<1的充分必要條件,故選C.【題目點撥】本題主要考查充分條件和必要條件的判斷,根據不等式的解法是解決本題的關鍵.10、D【解題分析】

把已知等式變形,利用復數代數形式的乘除運算化簡,再由復數模的計算公式計算.【題目詳解】解:由題意知,,,∴,故選:D.【題目點撥】本題考查復數代數形式的乘除運算,考查復數模的求法.11、A【解題分析】

根據兩個已知條件求出數列的公比和首項,即得的值.【題目詳解】設等比數列的公比為q.由,得,解得或.因為.且數列遞增,所以.又,解得,故.故選:A【題目點撥】本題主要考查等比數列的通項和求和公式,意在考查學生對這些知識的理解掌握水平.12、C【解題分析】

由線面垂直的性質,結合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質可判斷②錯誤;由線面角的定義和轉化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質定理可得線面平行,可得④正確.【題目詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯誤;若,設與平面所成角為可得,設到平面的距離為由可得即有,當且僅當取等號.可得的最大值為,即的范圍為,③正確;取中點,的中點,連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【題目點撥】此題考查立體幾何中與點、線、面位置關系有關的命題的真假判斷,處理這類問題,可以用已知的定理或性質來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.二、填空題:本題共4小題,每小題5分,共20分。13、28【解題分析】

將已知式轉化為,則的展開式中的系數中的系數,根據二項式展開式可求得其值.【題目詳解】,所以的展開式中的系數就是中的系數,而中的系數為,展開式中的系數為故答案為:28.【題目點撥】本題考查二項式展開式中的某特定項的系數,關鍵在于將原表達式化簡將三項的冪的形式轉化為可求的二項式的形式,屬于基礎題.14、【解題分析】

設弦所在的直線與橢圓相交于、兩點,利用點差法可求得直線的斜率,進而可求得直線的點斜式方程,化為一般式即可.【題目詳解】設弦所在的直線與橢圓相交于、兩點,由于點為弦的中點,則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.【題目點撥】本題考查利用弦的中點求弦所在直線的方程,一般利用點差法,也可以利用韋達定理設而不求法來解答,考查計算能力,屬于中等題.15、(1,)【解題分析】

在定義域[m,n]上的值域是[m2,n2],等價轉化為與的圖像在(1,)上恰有兩個交點,考慮相切狀態可求a的取值范圍.【題目詳解】由題意知:與的圖像在(1,)上恰有兩個交點考查臨界情形:與切于,.故答案為:.【題目點撥】本題主要考查導數的幾何意義,把已知條件進行等價轉化是求解的關鍵,側重考查數學抽象的核心素養.16、1【解題分析】

根據目標函數的解析式形式,分析目標函數的幾何意義,然后判斷求出目標函數取得最優解的點的坐標,即可求解.【題目詳解】作出實數,滿足表示的平面區域,如圖所示:由可得,則表示直線在軸上的截距,截距越小,越大.由可得,此時最大為1,故答案為:1.【題目點撥】本題主要考查線性規劃知識的運用,考查學生的計算能力,考查數形結合的數學思想.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解題分析】

(1)要證明,只需證明即可;(2)有3個根,可轉化為有3個根,即與有3個不同交點,利用導數作出的圖象即可.【題目詳解】(1)令,則,當時,,故在上單調遞增,所以,即,所以.(2)由已知,,依題意,有3個零點,即有3個根,顯然0不是其根,所以有3個根,令,則,當時,,當時,,當時,,故在單調遞減,在,上單調遞增,作出的圖象,易得.故實數的取值范圍為.【題目點撥】本題考查利用導數證明不等式以及研究函數零點個數問題,考查學生數形結合的思想,是一道中檔題.18、(1)(2)直線恒過定點,詳見解析【解題分析】

(1)依題意由橢圓的簡單性質可求出,即得橢圓C的方程;(2)設直線的方程為:,聯立直線的方程與橢圓方程可求得點的坐標,同理可求出點的坐標,根據的坐標可求出直線的方程,將其化簡成點斜式,即可求出定點坐標.【題目詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)設直線的方程為:,則∴或,∴,同理,當時,由有.∴,同理,又∴,當時,∴直線的方程為∴直線恒過定點,當時,此時也過定點..綜上:直線恒過定點.【題目點撥】本題主要考查利用橢圓的簡單性質求橢圓的標準方程,以及直線與橢圓的位置關系應用,定點問題的求法等,意在考查學生的邏輯推理能力和數學運算能力,屬于難題.19、;【解題分析】

根據題意,求出直線方程并與拋物線方程聯立,利用韋達定理,結合,即可求出拋物線C的方程;設,的中點為,把直線l方程與拋物線方程聯立,利用判別式求出的取值范圍,利用韋達定理求出,進而求出的中垂線方程,即可求得在軸上的截距的表達式,然后根據的取值范圍求解即可.【題目詳解】由題意可知,直線l的方程為,與拋物線方程方程聯立可得,,設,由韋達定理可得,,因為,,所以,解得,所以拋物線C的方程為;設,的中點為,由,消去可得,所以判別式,解得或,由韋達定理可得,,所以的中垂線方程為,令則,因為或,所以即為所求.【題目點撥】本題考查拋物線的標準方程和直線與拋物線的位置關系,考查向量知識的運用;考查學生分析問題、解決問題的能力和運算求解能力;屬于中檔題.20、(1),;(2)【解題分析】

(1)解絕對值不等式得,根據不等式的解集為列出方程組,解出即可;(2)求出的圖像與直線及交點的坐標,通過分割法將四邊形的面積分為兩個三角形,列出不等式,解不等式即可.【題目詳解】(1)由得:,,即,解得,.(2)的圖像與直線及圍成的四邊形,,,,.過點向引垂線,垂足為,則.化簡得:,(舍)或.故的取值范圍為.【題目點撥】本題主要考查了絕對值不等式的求法,以及絕對值不等式在幾何中的應用,屬于中檔題.21、(1);(2).【解題分析】

(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數量積公式進行求解,再代入可解得,再代入面積公式求解即可.【題目詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論