




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆陜西省西安市蓮湖區下學期第一次大考數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知集合,,若,則()A.4 B.-4 C.8 D.-82.已知復數是純虛數,其中是實數,則等于()A. B. C. D.3.若的展開式中的系數為150,則()A.20 B.15 C.10 D.254.已知拋物線,過拋物線上兩點分別作拋物線的兩條切線為兩切線的交點為坐標原點若,則直線與的斜率之積為()A. B. C. D.5.某人2018年的家庭總收人為元,各種用途占比如圖中的折線圖,年家庭總收入的各種用途占比統計如圖中的條形圖,已知年的就醫費用比年的就醫費用增加了元,則該人年的儲畜費用為()A.元 B.元 C.元 D.元6.已知函數,為的零點,為圖象的對稱軸,且在區間上單調,則的最大值是()A. B. C. D.7.已知雙曲線C:1(a>0,b>0)的焦距為8,一條漸近線方程為,則C為()A. B.C. D.8.已知等差數列中,,,則數列的前10項和()A.100 B.210 C.380 D.4009.若,則的虛部是()A. B. C. D.10.中,點在邊上,平分,若,,,,則()A. B. C. D.11.某市氣象部門根據2018年各月的每天最高氣溫平均數據,繪制如下折線圖,那么,下列敘述錯誤的是()A.各月最高氣溫平均值與最低氣溫平均值總體呈正相關B.全年中,2月份的最高氣溫平均值與最低氣溫平均值的差值最大C.全年中各月最低氣溫平均值不高于10°C的月份有5個D.從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值呈下降趨勢12.設為非零實數,且,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知全集,,則________.14.已知x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,則15.已知,則_____16.已知全集為R,集合,則___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)若恒成立,求整數的最大值;(2)求證:.18.(12分)的內角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.19.(12分)已知函數.(1)若,求不等式的解集;(2)已知,若對于任意恒成立,求的取值范圍.20.(12分)已知是拋物線的焦點,點在軸上,為坐標原點,且滿足,經過點且垂直于軸的直線與拋物線交于、兩點,且.(1)求拋物線的方程;(2)直線與拋物線交于、兩點,若,求點到直線的最大距離.21.(12分)新型冠狀病毒肺炎疫情發生以來,電子購物平臺成為人們的熱門選擇.為提高市場銷售業績,某公司設計了一套產品促銷方案,并在某地區部分營銷網點進行試點.運作一年后,對“采用促銷”和“沒有采用促銷”的營銷網點各選取了50個,對比上一年度的銷售情況,分別統計了它們的年銷售總額,并按年銷售總額增長的百分點分成5組:,分別統計后制成如圖所示的頻率分布直方圖,并規定年銷售總額增長10個百分點及以上的營銷網點為“精英店”.(1)請你根據題中信息填充下面的列聯表,并判斷是否有的把握認為“精英店與采用促銷活動有關”;采用促銷沒有采用促銷合計精英店非精英店合計5050100(2)某“精英店”為了創造更大的利潤,通過分析上一年度的售價(單位:元)和日銷量(單位:件)的一組數據后決定選擇作為回歸模型進行擬合.具體數據如下表,表中的:①根據上表數據計算的值;②已知該公司成本為10元/件,促銷費用平均5元/件,根據所求出的回歸模型,分析售價定為多少時日利潤可以達到最大.附①:附②:對應一組數據,其回歸直線的斜率和截距的最小二乘法估計分別為.22.(10分)設(1)當時,求不等式的解集;(2)若,求的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
根據交集的定義,,可知,代入計算即可求出.【題目詳解】由,可知,又因為,所以時,,解得.故選:B.【題目點撥】本題考查交集的概念,屬于基礎題.2、A【解題分析】
對復數進行化簡,由于為純虛數,則化簡后的復數形式中,實部為0,得到的值,從而得到復數.【題目詳解】因為為純虛數,所以,得所以.故選A項【題目點撥】本題考查復數的四則運算,純虛數的概念,屬于簡單題.3、C【解題分析】
通過二項式展開式的通項分析得到,即得解.【題目詳解】由已知得,故當時,,于是有,則.故選:C【題目點撥】本題主要考查二項式展開式的通項和系數問題,意在考查學生對這些知識的理解掌握水平.4、A【解題分析】
設出A,B的坐標,利用導數求出過A,B的切線的斜率,結合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【題目詳解】解:設A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點睛:(1)本題主要考查拋物線的簡單幾何性質,考查直線和拋物線的位置關系,意在考查學生對這些基礎知識的掌握能力和分析推理能力.(2)解答本題的關鍵是解題的思路,由于與切線有關,所以一般先設切點,先設A,B,,再求切線PA,PB方程,求點P坐標,再根據得到最后求直線與的斜率之積.如果先設點P的坐標,計算量就大一些.5、A【解題分析】
根據2018年的家庭總收人為元,且就醫費用占得到就醫費用,再根據年的就醫費用比年的就醫費用增加了元,得到年的就醫費用,然后由年的就醫費用占總收人,得到2019年的家庭總收人再根據儲畜費用占總收人求解.【題目詳解】因為2018年的家庭總收人為元,且就醫費用占所以就醫費用因為年的就醫費用比年的就醫費用增加了元,所以年的就醫費用元,而年的就醫費用占總收人所以2019年的家庭總收人為而儲畜費用占總收人所以儲畜費用:故選:A【題目點撥】本題主要考查統計中的折線圖和條形圖的應用,還考查了建模解模的能力,屬于基礎題.6、B【解題分析】
由題意可得,且,故有①,再根據,求得②,由①②可得的最大值,檢驗的這個值滿足條件.【題目詳解】解:函數,,為的零點,為圖象的對稱軸,,且,、,,即為奇數①.在,單調,,②.由①②可得的最大值為1.當時,由為圖象的對稱軸,可得,,故有,,滿足為的零點,同時也滿足滿足在上單調,故為的最大值,故選:B.【題目點撥】本題主要考查正弦函數的圖象的特征,正弦函數的周期性以及它的圖象的對稱性,屬于中檔題.7、A【解題分析】
由題意求得c與的值,結合隱含條件列式求得a2,b2,則答案可求.【題目詳解】由題意,2c=8,則c=4,又,且a2+b2=c2,解得a2=4,b2=12.∴雙曲線C的方程為.故選:A.【題目點撥】本題考查雙曲線的簡單性質,屬于基礎題.8、B【解題分析】
設公差為,由已知可得,進而求出的通項公式,即可求解.【題目詳解】設公差為,,,,.故選:B.【題目點撥】本題考查等差數列的基本量計算以及前項和,屬于基礎題.9、D【解題分析】
通過復數的乘除運算法則化簡求解復數為:的形式,即可得到復數的虛部.【題目詳解】由題可知,所以的虛部是1.故選:D.【題目點撥】本題考查復數的代數形式的混合運算,復數的基本概念,屬于基礎題.10、B【解題分析】
由平分,根據三角形內角平分線定理可得,再根據平面向量的加減法運算即得答案.【題目詳解】平分,根據三角形內角平分線定理可得,又,,,,..故選:.【題目點撥】本題主要考查平面向量的線性運算,屬于基礎題.11、D【解題分析】
根據折線圖依次判斷每個選項得到答案.【題目詳解】由繪制出的折線圖知:在A中,各月最高氣溫平均值與最低氣溫平均值為正相關,故A正確;在B中,全年中,2月的最高氣溫平均值與最低氣溫平均值的差值最大,故B正確;在C中,全年中各月最低氣溫平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5個,故C正確;在D中,從2018年7月至12月該市每天最高氣溫平均值與最低氣溫平均值,先上升后下降,故D錯誤.故選:D.【題目點撥】本題考查了折線圖,意在考查學生的理解能力.12、C【解題分析】
取,計算知錯誤,根據不等式性質知正確,得到答案.【題目詳解】,故,,故正確;取,計算知錯誤;故選:.【題目點撥】本題考查了不等式性質,意在考查學生對于不等式性質的靈活運用.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
利用集合的補集運算即可求解.【題目詳解】由全集,,所以.故答案為:【題目點撥】本題考查了集合的補集運算,需理解補集的概念,屬于基礎題.14、3【解題分析】
先根據約束條件畫出可行域,再由y=2x-z表示直線在y軸上的截距最大即可得解.【題目詳解】x,y滿足約束條件x-y-1≥0x+y-3≤02y+1≥0,畫出可行域如圖所示.目標函數z=2x-y,即平移直線y=2x-z,截距最大時即為所求.2y+1=0x-y-1=0點A(12,z在點A處有最小值:z=2×1故答案為:32【題目點撥】本題主要考查線性規劃的基本應用,利用數形結合,結合目標函數的幾何意義是解決此類問題的基本方法.15、【解題分析】
化簡得,利用周期即可求出答案.【題目詳解】解:,∴函數的最小正周期為6,∴,,故答案為:.【題目點撥】本題主要考查三角函數的性質的應用,屬于基礎題.16、【解題分析】
先化簡集合A,再求A∪B得解.【題目詳解】由題得A={0,1},所以A∪B={-1,0,1}.故答案為{-1,0,1}【題目點撥】本題主要考查集合的化簡和并集運算,意在考查學生對這些知識的理解掌握水平和分析推理能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)整數的最大值為;(2)見解析.【解題分析】
(1)將不等式變形為,構造函數,利用導數研究函數的單調性并確定其最值,從而得到正整數的最大值;(2)根據(1)的結論得到,利用不等式的基本性質可證得結論.【題目詳解】(1)由得,令,,令,對恒成立,所以,函數在上單調遞增,,,,,故存在使得,即,從而當時,有,,所以,函數在上單調遞增;當時,有,,所以,函數在上單調遞減.所以,,,因此,整數的最大值為;(2)由(1)知恒成立,,令則,,,,,上述等式全部相加得,所以,,因此,【題目點撥】本題考查導數在函數單調性、最值中的應用,以及放縮法證明不等式的技巧,屬于難題.18、(1);(2)【解題分析】
試題分析:(1)根據余弦定理求出B,帶入條件求出,利用同角三角函數關系求其余弦,再利用兩角差的余弦定理即可求出;(2)根據(1)及面積公式可得,利用正弦定理即可求出.試題解析:(1)由,得,∴.∵,∴.由,得,∴.∴.(2)由(1),得.由及題設條件,得,∴.由,得,∴,∴.點睛:解決三角形中的角邊問題時,要根據條件選擇正余弦定理,將問題轉化統一為邊的問題或角的問題,利用三角中兩角和差等公式處理,特別注意內角和定理的運用,涉及三角形面積最值問題時,注意均值不等式的利用,特別求角的時候,要注意分析角的范圍,才能寫出角的大小.19、(1)或;(2).【解題分析】
(1)時,分類討論,去掉絕對值,分類討論解不等式.(2)時,分類討論去絕對值,得到解析式,由函數的單調性可得的最小值,通過恒成立問題,得到關于的不等式,得到的取值范圍.【題目詳解】(1)因為,所以,所以不等式等價于或或,解得或.所以不等式的解集為或.(2)因為,所以,根據函數的單調性可知函數的最小值為,因為恒成立,所以,解得.所以實數的取值范圍是.【題目點撥】本題考查分類討論去絕對值,分段函數求最值,不等式恒成立問題,屬于中檔題.20、(1);(2).【解題分析】
(1)求得點的坐標,可得出直線的方程,與拋物線的方程聯立,結合求出正實數的值,進而可得出拋物線的方程;(2)設點,,設的方程為,將直線的方程與拋物線的方程聯立,列出韋達定理,結合求得的值,可得出直線所過定點的坐標,由此可得出點到直線的最大距離.【題目詳解】(1)易知點,又,所以點,則直線的方程為.聯立,解得或,所以.故拋物線的方程為;(2)設的方程為,聯立有,設點,,則,所以.所以,解得.所以直線的方程為,恒過點.又點,故當直線與軸垂直時,點到直線的最大距離為.【題目點撥】本題考查拋物線方程的求解,同時也考查了拋物線中最值問題的求解,涉及韋達定理設而不求法的應用,考查運算求解能力,屬于中等題.21、(1)列聯表見解析,有把握;(2)①;②元時【解題分析】
(1)直接由題意列出列聯表,通過計算,可判斷精英店與采用促銷活動是否有關.(2)①代入表
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 數字化軍事裝備選型
- 高速公路智能交通系統在交通管理與維護成本控制體系中的應用報告
- 2025年線下演出市場觀眾滿意度與忠誠度研究報告
- 社區心理健康服務在2025年的市場前景與推廣策略報告
- 2025年智慧零售大數據存儲與消費體驗優化報告
- 汽車共享市場2025年展望:運營模式升級與用戶行為洞察報告
- 土木實習報告版
- 中煙香港公司深度報告:“內生”鑄就業務基石“外延”拓展成長空間
- 辦公室收文辦理管理制度
- 星級酒店層級管理制度
- 2024年湖北省丹江口市初中畢業生適應性考試地理·生物試題
- 承包商安全管理培訓課件
- 學校體檢服務投標方案(技術方案技術標)
- NY-T 3213-2023 植保無人駕駛航空器 質量評價技術規范
- 2023年春季內蒙古高一化學學業水平合格性考試卷真題
- 5A景區規劃方案
- 機械制圖教案(完整版)
- 工業互聯網與智能制造
- 司母戊鼎的介紹
- 肺炎衣原體醫學課件
- 2024年兒童童車行業分析報告及未來發展趨勢
評論
0/150
提交評論