




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年遼寧省大連市新民間聯(lián)盟數(shù)學九年級第一學期期末監(jiān)測試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.拋物線的頂點坐標是()A. B. C. D.2.如圖,已知,是的中點,且矩形與矩形相似,則長為()A.5 B. C. D.63.下列函數(shù)屬于二次函數(shù)的是A. B.C. D.4.二次函數(shù)y=(x﹣1)2+2,它的圖象頂點坐標是()A.(﹣2,1) B.(2,1) C.(2,﹣1) D.(1,2)5.如圖釣魚竿AC長6m,露在水面上的魚線BC長3m,釣者想看看魚釣上的情況,把魚竿AC逆時針轉(zhuǎn)動15°到AC′的位置,此時露在水面上的魚線B'C'長度是()A.3m B.m C.m D.4m6.“三等分角”大約是在公元前五世紀由古希臘人提出來的.借助如圖所示的“三等分角儀”能三等分任一角.這個三等分角儀由兩根有槽的棒,組成,兩根棒在點相連并可繞轉(zhuǎn)動,點固定,,點,可在槽中滑動,若,則的度數(shù)是()A.60° B.65° C.75° D.80°7.如圖,AC是⊙O的直徑,弦BD⊥AO于E,連接BC,過點O作OF⊥BC于F,若BD=8cm,AE=2cm,則OF的長度是()A.3cm B.cm C.2.5cm D.cm8.如圖,二次函數(shù)的圖象,則下列結(jié)論正確的是()①;②;③;④A.①②③ B.②③④ C.①③④ D.①②③④9.劉徽是我國古代一位偉大的數(shù)學家,他的杰作《九章算術注》和《海寶算經(jīng)》是中國寶貴的文化遺產(chǎn).他所提出的割圓術可以估算圓周率.割圓術是依次用圓內(nèi)接正六邊形、正十二邊形…去逼近圓.如圖,的半徑為1,則的內(nèi)接正十二邊形面積為()A.1 B.3 C.3.1 D.3.1410.如圖,矩形中,,,點為矩形內(nèi)一動點,且滿足,則線段的最小值為()A.5 B.1 C.2 D.311.如圖,在△ABC中,DE∥BC,=,DE=4cm,則BC的長為()A.8cm B.12cm C.11cm D.10cm12.如圖,中,將繞點逆時針旋轉(zhuǎn)后得到,點經(jīng)過的路徑為則圖中涂色部分的面積為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,,請補充—個條件:___________,使(只寫一個答案即可).14.如圖,四邊形ABCD內(nèi)接于⊙O,若∠BOD=140°,則∠BCD=_____.15.從這三個數(shù)中任取兩個不同的數(shù)作為點的坐標,則點剛好落在第四象限的概率是_.16.若△ABC∽△DEF,,且相似比為1:2,則△ABC與△DEF面積比_____________.17.如圖,斜坡長為100米,坡角,現(xiàn)因“改小坡度”工程的需要,將斜坡改造成坡度的斜坡(、、三點在地面的同一條垂線上),那么由點到點下降了_________米(結(jié)果保留根號)18.某種植基地2016年蔬菜產(chǎn)量為100噸,2018年蔬菜實際產(chǎn)量為121噸,則蔬菜產(chǎn)量的年平均增長率為____.三、解答題(共78分)19.(8分)如圖,已知拋物線.(1)用配方法將化成的形式,并寫出其頂點坐標;(2)直接寫出該拋物線與軸的交點坐標.20.(8分)如圖,AD是⊙O的直徑,AB為⊙O的弦,OP⊥AD,OP與AB的延長線交于點P,點C在OP上,滿足∠CBP=∠ADB.(1)求證:BC是⊙O的切線;(2)若OA=2,AB=1,求線段BP的長.21.(8分)如圖,已知Rt△ABO,點B在軸上,∠ABO=90°,∠AOB=30°,OB=,反比例函數(shù)的圖象經(jīng)過OA的中點C,交AB于點D.(1)求反比例函數(shù)的表達式;(2)求△OCD的面積;(3)點P是軸上的一個動點,請直接寫出使△OCP為直角三角形的點P坐標.22.(10分)如圖所示,∠DBC=90°,∠C=45°,AC=2,△ABC繞點B逆時針旋轉(zhuǎn)60°得到△DBE,連接AE.(1)求證:△ABC≌△ABE;(2)連接AD,求AD的長.23.(10分)已知二次函數(shù)y1=x2+mx+n的圖象經(jīng)過點P(﹣3,1),對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線.(1)求m,n的值,(2)如圖,一次函數(shù)y2=kx+b的圖象經(jīng)過點P,與x軸相交于點A,與二次函數(shù)的圖象相交于另一點B,若點B與點M(﹣4,6)關于拋物線對稱軸對稱,求一次函數(shù)的表達式.(3)根據(jù)函數(shù)圖象直接寫出y1>y2時x的取值范圍.24.(10分)在直角坐標平面內(nèi),直線分別與軸、軸交于點,.拋物線經(jīng)過點與點,且與軸的另一個交點為.點在該拋物線上,且位于直線的上方.(1)求上述拋物線的表達式;(2)聯(lián)結(jié),,且交于點,如果的面積與的面積之比為,求的余切值;(3)過點作,垂足為點,聯(lián)結(jié).若與相似,求點的坐標.25.(12分)如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字1,2,1.(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為;(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針所指扇形中的數(shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是1的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).26.如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.點P從B出發(fā),沿BC方向,以1cm/s的速度向點C運動,點Q從A出發(fā),沿AB方向,以2cm/s的速度向點B運動;若兩點同時出發(fā),當其中一點到達端點時,兩點同時停止運動,設運動時間為t(s)(t>0),△BPQ的面積為S(cm2).(1)t=2秒時,則點P到AB的距離是cm,S=cm2;(2)t為何值時,PQ⊥AB;(3)t為何值時,△BPQ是以BP為底邊的等腰三角形;(4)求S與t之間的函數(shù)關系式,并求S的最大值.
參考答案一、選擇題(每題4分,共48分)1、A【分析】根據(jù)二次函數(shù)的性質(zhì),利用頂點式即可得出頂點坐標.【詳解】解:∵拋物線,
∴拋物線的頂點坐標是:(1,3),
故選:A.【點睛】本題主要考查了利用二次函數(shù)頂點式求頂點坐標.能根據(jù)二次函數(shù)的頂點式找出拋物線的對稱軸及頂點坐標是解題的關鍵.2、B【分析】根據(jù)相似多邊形的性質(zhì)列出比例式,計算即可.【詳解】解:∵矩形ABDC與矩形ACFE相似,∴,∵,是的中點,∴AE=5∴,解得,AC=5,故選B.【點睛】本題考查的是相似多邊形的性質(zhì),掌握相似多邊形的對應邊的比相等是解題的關鍵.3、A【分析】一般地,我們把形如y=ax2+bx+c(其中a,b,c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù).【詳解】由二次函數(shù)的定義可知A選項正確,B和D選項為一次函數(shù),C選項為反比例函數(shù).【點睛】了解二次函數(shù)的定義是解題的關鍵.4、D【解析】二次函數(shù)的頂點式是,,其中是這個二次函數(shù)的頂點坐標,根據(jù)頂點式可直接寫出頂點坐標.【詳解】解:故選:D.【點睛】根據(jù)拋物線的頂點式,可確定拋物線的開口方向,頂點坐標(對稱軸),最大(最小)值,增減性等.5、B【解析】因為三角形ABC和三角形AB′C′均為直角三角形,且BC、B′C′都是我們所要求角的對邊,所以根據(jù)正弦來解題,求出∠CAB,進而得出∠C′AB′的度數(shù),然后可以求出魚線B'C'長度.【詳解】解:∵sin∠CAB=∴∠CAB=45°.∵∠C′AC=15°,∴∠C′AB′=60°.∴sin60°=,解得:B′C′=3.故選:B.【點睛】此題主要考查了解直角三角形的應用,解本題的關鍵是把實際問題轉(zhuǎn)化為數(shù)學問題.6、D【分析】根據(jù)OC=CD=DE,可得∠O=∠ODC,∠DCE=∠DEC,根據(jù)三角形的外角性質(zhì)可知∠DCE=∠O+∠ODC=2∠ODC據(jù)三角形的外角性質(zhì)即可求出∠ODC數(shù),進而求出∠CDE的度數(shù).【詳解】∵,∴,,設,∴,∴,∵,∴,即,解得:,.故答案為D.【點睛】本題考查等腰三角形的性質(zhì)以及三角形的外角性質(zhì),理清各個角之間的關系是解答本題的關鍵.7、D【解析】分析:根據(jù)垂徑定理得出OE的長,進而利用勾股定理得出BC的長,再利用相似三角形的判定和性質(zhì)解答即可.詳解:連接OB,∵AC是⊙O的直徑,弦BD⊥AO于E,BD=1cm,AE=2cm.在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=1.在Rt△EBC中,BC=.∵OF⊥BC,∴∠OFC=∠CEB=90°.∵∠C=∠C,∴△OFC∽△BEC,∴,即,解得:OF=.故選D.點睛:本題考查了垂徑定理,關鍵是根據(jù)垂徑定理得出OE的長.8、B【分析】由二次函數(shù)的開口方向,對稱軸0<x<1,以及二次函數(shù)與y的交點在x軸的上方,與x軸有兩個交點等條件來判斷各結(jié)論的正誤即可.【詳解】∵二次函數(shù)的開口向下,與y軸的交點在y軸的正半軸,∴a<0,c>0,故④正確;∵0<?<1,∴b>0,故①錯誤;當x=?1時,y=a?b+c<0,∴a+c<b,故③正確;∵二次函數(shù)與x軸有兩個交點,∴△=b2?4ac>0,故②正確正確的有3個,故選:C.【點睛】此題主要考查了二次函數(shù)的圖象與系數(shù)的關系,要熟練掌握,解答此題的關鍵是要明確:①二次項系數(shù)a決定拋物線的開口方向和大?。寒攁>0時,拋物線向上開口;當a<0時,拋物線向下開口;②一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右.(簡稱:左同右異)③常數(shù)項c決定拋物線與y軸交點.拋物線與y軸交于(0,c).9、B【分析】根據(jù)直角三角形的30度角的性質(zhì)以及三角形的面積公式計算即可解決問題.【詳解】解:如圖,作AC⊥OB于點C.∵⊙O的半徑為1,∴圓的內(nèi)接正十二邊形的中心角為360°÷12=30°,∴過A作AC⊥OB,∴AC=OA=,∴圓的內(nèi)接正十二邊形的面積S=12××1×=3.故選B.【點睛】此題主要考查了正多邊形和圓,三角形的面積公式等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考??碱}型.10、B【分析】通過矩形的性質(zhì)和等角的條件可得∠BPC=90°,所以P點應該在以BC為直徑的圓上,即OP=4,根據(jù)兩邊之差小于第三邊及三點共線問題解決.【詳解】如圖,∵四邊形ABCD為矩形,∴AB=CD=3,∠BCD=90°,∴∠PCD+∠PCB=90°,∵,∴∠PBC+∠PCB=90°,∴∠BPC=90°,∴點P在以BC為直徑的圓⊙O上,在Rt△OCD中,OC=,CD=3,由勾股定理得,OD=5,∵PD≥,∴當P,D,O三點共線時,PD最小,∴PD的最小值為OD-OP=5-4=1.故選:B.【點睛】本題考查矩形的性質(zhì),勾股定理,線段最小值問題及圓的性質(zhì),分析出P點的運動軌跡是解答此題的關鍵.11、B【分析】由平行可得=,再由條件可求得=,代入可求得BC.【詳解】解:∵DE∥BC,∴=,∵=,∴=,∴=,且DE=4cm,∴=,解得:BC=12cm,故選:B.【點睛】本題主要考查平行線分線段成比例的性質(zhì),掌握平行線分線段成比例中的對應線段成比例是解題的關鍵.12、A【分析】先根據(jù)勾股定理得到AB,再根據(jù)扇形的面積公式計算出,由旋轉(zhuǎn)的性質(zhì)得到Rt△ADE≌Rt△ACB,于是.【詳解】∵∠ACB=90°,AC=BC=1,
∴,
∴,又∵Rt△ABC繞A點逆時針旋轉(zhuǎn)30°后得到Rt△ADE,
∴Rt△ADE≌Rt△ACB,∴.
故選:A【點睛】本題主要考查的是旋轉(zhuǎn)的性質(zhì)、扇形的面積公式,勾股定理的應用,將陰影部分的面積轉(zhuǎn)化為扇形ABD的面積是解題的關鍵.二、填空題(每題4分,共24分)13、∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD?AC=AB?AE(填一個即可).【分析】根據(jù)相似三角形的判定方法,已知一組角相等則再添加一組相等的角或夾該角的兩個邊對應成比例即可推出兩三角形相似.【詳解】∵∠DAB=∠CAE,∴∠DAE=∠BAC,∴當∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD?AC=AB?AE時兩三角形相似.故答案為:∠D=∠B或∠AED=∠C或AD:AB=AE:AC或AD?AC=AB?AE(填一個即可).【點睛】本題考查了相似三角形的判定:①如果兩個三角形的三組對應邊的比相等,那么這兩個三角形相似;②如果兩個三角形的兩條對應邊的比相等,且夾角相等,那么這兩個三角形相似;③如果兩個三角形的兩個對應角相等,那么這兩個三角形相似.平行于三角形一邊的直線截另兩邊或另兩邊的延長線所組成的三角形與原三角形相似.14、110°.【分析】由圓周角定理,同弧所對的圓心角是圓周角的2倍.可求∠A=∠BOD=70°,再根據(jù)圓內(nèi)接四邊形對角互補,可得∠C=180-∠A=110°【詳解】∵∠BOD=140°∴∠A=∠BOD=70°∴∠C=180°-∠A=110°,故答案為:110°.【點睛】此題考查圓周角定理,解題的關鍵在于利用圓內(nèi)接四邊形的性質(zhì)求角度.15、【分析】首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與P點剛好落在第四象限的情況即可求出問題答案.【詳解】解:畫樹狀圖得:
∵共有6種等可能的結(jié)果,其中(1,?2),(3,?2)點落在第四象限,
∴P點剛好落在第四象限的概率為,
故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率,熟記各象限內(nèi)點的符號特點是解題關鍵.16、1:1【分析】由題意直接根據(jù)相似三角形面積的比等于相似比的平方進行求值即可.【詳解】解:∵△ABC∽△DEF,且△ABC與△DEF的相似比為1:2,∴△ABC與△DEF的面積比為1:1,故答案為:1:1.【點睛】本題考查的是相似三角形的性質(zhì),熟練掌握相似三角形面積的比等于相似比的平方是解題的關鍵.17、【分析】根據(jù)直角三角形的性質(zhì)求出AC,根據(jù)余弦的定義求出BC,根據(jù)坡度的概念求出CD,結(jié)合圖形計算,得到答案.【詳解】在Rt△ABC中,∠ABC=30°,
∴AC=AB=50,BC=AB?cos∠ABC=50,
∵斜坡BD的坡度i=1:5,
∴DC:BC=1:5,
∴DC=10,
則AD=50-10,
故答案為:50-10.【點睛】此題考查解直角三角形的應用-坡度坡角問題,掌握坡度是坡面的鉛直高度h和水平寬度l的比是解題的關鍵.18、10%【分析】2016年到2018年是2年的時間,設年增長率為x,可列式100×=121,解出x即可.【詳解】設平均年增長率為x,可列方程100×=121解得x=10%故本題答案應填10%.【點睛】本題考查了一元二次函數(shù)的應用問題.三、解答題(共78分)19、(1),頂點坐標為;(2),,【分析】(1)利用配方法將二次函數(shù)的一般式轉(zhuǎn)化為頂點式,從而求出拋物線的頂點坐標;(2)將y=0代入解析式中即可求出結(jié)論.【詳解】解:(1),頂點坐標為;(2)將y=0代入解析式中,得解得:∴拋物線與軸的交點坐標為,,【點睛】此題考查的是求拋物線的頂點坐標和求拋物線與x軸的交點坐標,掌握將二次函數(shù)的一般式轉(zhuǎn)化為頂點式和一元二次方程的解法是解決此題的關鍵.20、(1)見解析;(2)BP=1.【分析】(1)連接OB,如圖,根據(jù)圓周角定理得到∠ABD=90°,再根據(jù)等腰三角形的性質(zhì)和已知條件證出∠OBC=90°,即可得出結(jié)論;(2)證明△AOP∽△ABD,然后利用相似三角形的對應邊成比例求BP的長.【詳解】(1)證明:連接OB,如圖,∵AD是⊙O的直徑,∴∠ABD=90°,∴∠A+∠ADB=90°,∵OA=OB,∴∠A=∠OBA,∵∠CBP=∠ADB,∴∠OBA+∠CBP=90°,∴∠OBC=180°﹣90°=90°,∴BC⊥OB,∴BC是⊙O的切線;(2)解:∵OA=2,∴AD=2OA=4,∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∵∠A=∠A,∴△AOP∽△ABD,∴=,即=,解得:BP=1.【點睛】本題考查了切線的判定、圓周角定理、等腰三角形的性質(zhì)、相似三角形的判定與性質(zhì)等知識;熟練掌握圓周角定理和切線的判定是解題的關鍵.21、(1);(2)面積為;(3)P(2,0)或(4,0)【分析】(1)解直角三角形求得AB,作CE⊥OB于E,根據(jù)平行線分線段成比例定理和三角形中位線的性質(zhì)求得C的坐標,然后根據(jù)待定系數(shù)法即可求得反比例函數(shù)的解析式;(2)補形法,求出各點坐標,S△OCD=S△AOB-S△ACD-S△OBD;(3)分兩種情形:①∠OPC=90°.②∠OCP=90°,分別求解即可.【詳解】解:(1)∵∠ABO=90°,∠AOB=30°,OB=,∴AB=OB=2,作CE⊥OB于E,
∵∠ABO=90°,
∴CE∥AB,
∴OC=AC,
∴OE=BE=OB=,CE=AB=1,∴C(,1),∵反比例函數(shù)(x>0)的圖象經(jīng)過OA的中點C,∴1=,∴k=,∴反比例函數(shù)的關系式為;(2)∵OB=,∴D的橫坐標為,代入得,y=,∴D(,),∴BD=,∵AB=,∴AD=,∴S△OCD=S△AOB-S△ACD-S△OBD=OB?AB-AD?BE-BD?OB=(3)當∠OPC=90°時,點P的橫坐標與點C的橫坐標相等,C(2,2),
∴P(2,0).
當∠OCP=90°時.
∵C(2,2),
∴∠COB=45°.
∴△OCP為等腰直角三角形.
∴P(4,0).
綜上所述,點P的坐標為(2,0)或(4,0).【點睛】本題主要考查的是一次函數(shù)、反比例函數(shù)的綜合應用,列出關于k、n的方程組是解答問題(2)的關鍵,分類討論是解答問題(3)的關鍵.22、(1)見解析;(2).【分析】(1)根據(jù)旋轉(zhuǎn)的性質(zhì)得到∠DBE=∠ABC,∠EBC=60°,BE=BC,根據(jù)全等三角形的判定定理即可得到結(jié)論;(2)連接AD,根據(jù)旋轉(zhuǎn)的性質(zhì)得到DE=AC,∠BED=∠C,DE=AC=2,根據(jù)全等三角形的性質(zhì)得到∠BEA=∠C,AE=AC=2,根據(jù)等腰三角形的性質(zhì)即可得到結(jié)論.【詳解】(1)證明:∵△ABC繞點B逆時針旋轉(zhuǎn)60°得到△DBE,∴∠DBE=∠ABC,∠EBC=60°,BE=BC,∵∠DBC=90°,∴∠DBE=∠ABC=30°,∴∠ABE=30°,在△ABC與△ABE中,,∴△ABC≌△ABE(SAS);(2)解:連接AD,∵△ABC繞點B逆時針旋轉(zhuǎn)60°得到△DBE,∴DE=AC,∠BED=∠C,DE=AC=2,∵△ABC≌△ABE,∴∠BEA=∠C,AE=AC=2,∵∠C=45°,∴∠BED=∠BEA=∠C=45°,∴∠AED=90°,DE=AE,∴AD=AE=2.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),等腰直角三角形的判定和性質(zhì),熟練掌握旋轉(zhuǎn)的性質(zhì)是解題的關鍵.23、(1)1,;(1)y=x+4;(3)x<﹣3或x>1.【分析】(1)將點P(-3,1)代入二次函數(shù)解析式得出3m﹣n=8,然后根據(jù)對稱軸過點(-1,0)得出對稱軸為x=-1,據(jù)此求出m的值,然后進一步求出n的值即可;(1)根據(jù)一次函數(shù)經(jīng)過點P(﹣3,1),得出1=﹣3k+b,且點B與點M(﹣4,6)關于x=﹣1對稱,所以B(1,6),所以6=1k+b,最后求出k與b的值即可;(3)y1>y1,則說明y1的函數(shù)圖像在y1函數(shù)圖像上方,據(jù)此根據(jù)圖像直接寫出范圍即可.【詳解】(1)由二次函數(shù)經(jīng)過點P(﹣3,1),∴1=9﹣3m+n,∴3m﹣n=8,又∵對稱軸是經(jīng)過(﹣1,0)且平行于y軸的直線,∴對稱軸為x=﹣1,∴﹣=﹣1,∴m=1,∴n=﹣1;(1)∵一次函數(shù)經(jīng)過點P(﹣3,1),∴1=﹣3k+b,∵點B與點M(﹣4,6)關于x=﹣1對稱,∴B(1,6),∴6=1k+b,∴k=1,b=4,∴一次函數(shù)解析式為y=x+4;(3)由圖象可知,x<﹣3或x>1時,y1>y1.【點睛】本題主要考查了二次函數(shù)的綜合運用,熟練掌握相關概念是解題關鍵.24、(1);(2);(3)的坐標為或【分析】(1)先根據(jù)直線表達式求出A,C的坐標,再用待定系數(shù)法求出拋物線的表達式即可;(2)過點作于點,先求出點B的坐標,再根據(jù)面積之間的關系求出點E的坐標,然后利用余切的定義即可得出答案;(3)若與相似,分兩種情況:若,;若時,,分情況進行討論即可.【詳解】(1)當時,,解得,∴當時,,∴把,兩點的坐標代入,得,解得,.(2)過點作于點,當時,解得∴,,,,,.,.(3),,①若,,則點的縱坐標為2,把代入得或(舍去),.②若時,過點作軸于點,過點作交軸于點,,,,,設,則,,.∵,∴∴,,設,代入得(舍去)或者,.綜上所述,的坐標為或.【點睛】本題主要考查相似三角形的判定及性質(zhì),待定系數(shù)法,三角函數(shù),掌握相似三角形的判定方法和分情況討論是解題的關鍵.25、(1);(2)見解析,【分析】(1)由標有數(shù)字1、2、1的1個轉(zhuǎn)盤中,奇數(shù)的有1、1這2個,利用概率公式計算可得;(2)根據(jù)題意列表得出所有等可能的情況數(shù),得出這兩個數(shù)字之和是1的倍
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 生產(chǎn)材料采購管理制度
- 生產(chǎn)質(zhì)檢歸誰管理制度
- 公園大道萬圣節(jié)活動方案
- it外包管理制度
- p礦班組管理制度
- 不按公司管理制度
- 專業(yè)銷售管理制度
- 專柜加鎖管理制度
- 專項補貼管理制度
- 業(yè)主質(zhì)量管理制度
- 正規(guī)重鋼別墅合同范例
- 房地產(chǎn)中介服務平臺合作協(xié)議
- 專項8 非連續(xù)性文本閱讀- 2022-2023學年五年級語文下冊期末專項練習
- 2024年通信電源專業(yè)知識考試題庫(含答案)
- 1.3氧化還原反應 第1課時 課件 高一上學期化學人教版(2019)必修第一冊
- JJF 1375-2024機動車發(fā)動機轉(zhuǎn)速測量儀校準規(guī)范
- 唐詩經(jīng)典與中國文化傳統(tǒng)學習通超星期末考試答案章節(jié)答案2024年
- 工程施工分包協(xié)議書
- 《火災調(diào)查 第2版》 課件 第5-7章 火災調(diào)查分析、放火火災調(diào)查、電氣火災調(diào)查
- 醫(yī)院物業(yè)保潔服務方案(技術方案)
- 2024年山東省煙臺市中考生物試題卷(含答案解析)
評論
0/150
提交評論