




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆內蒙古包頭市第二中學中考猜題數學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下列運算中正確的是()A.x2÷x8=x?6 B.a·a2=a2 C.(a2)3=a5 D.(3a)3=9a32.已知am=2,an=3,則a3m+2n的值是()A.24 B.36 C.72 D.63.如果(x-2)(x+3)=x2+px+q,那么p、q的值是()A.p=5,q=6 B.p=1,q=-6 C.p=1,q=6 D.p=5,q=-64.若點M(﹣3,y1),N(﹣4,y2)都在正比例函數y=﹣k2x(k≠0)的圖象上,則y1與y2的大小關系是()A.y1<y2B.y1>y2C.y1=y2D.不能確定5.把邊長相等的正六邊形ABCDEF和正五邊形GHCDL的CD邊重合,按照如圖所示的方式疊放在一起,延長LG交AF于點P,則∠APG=()A.141° B.144° C.147° D.150°6.在同一平面直角坐標系中,一次函數y=kx﹣2k和二次函數y=﹣kx2+2x﹣4(k是常數且k≠0)的圖象可能是()A. B.C. D.7.如圖給定的是紙盒的外表面,下面能由它折疊而成的是()A. B. C. D.8.下列幾何體中,俯視圖為三角形的是()A. B. C. D.9.設0<k<2,關于x的一次函數y=(k-2)x+2,當1≤x≤2時,y的最小值是()A.2k-2B.k-1C.kD.k+110.一、單選題在反比例函數的圖象中,陰影部分的面積不等于4的是()A. B. C. D.11.已知反比例函數,下列結論不正確的是()A.圖象經過點(﹣2,1) B.圖象在第二、四象限C.當x<0時,y隨著x的增大而增大 D.當x>﹣1時,y>212.將拋物線向左平移1個單位,再向下平移3個單位后所得拋物線的解析式為()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知a+b=1,那么a2-b2+2b=________.14.如圖,利用標桿測量建筑物的高度,已知標桿高1.2,測得,則建筑物的高是__________.15.在△ABC中,∠C=30°,∠A﹣∠B=30°,則∠A=_____.16.如圖,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.17.如圖,網格中的四個格點組成菱形ABCD,則tan∠DBC的值為___________.18.口袋中裝有4個小球,其中紅球3個,黃球1個,從中隨機摸出兩球,都是紅球的概率為_________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖,AB=AC,點D是BC的中點,AB平分∠DAE,AE⊥BE,垂足為E.求證:AD=AE.20.(6分)在等邊三角形ABC中,點P在△ABC內,點Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求證:△ABP≌△CAQ;請判斷△APQ是什么形狀的三角形?試說明你的結論.21.(6分)某地2015年為做好“精準扶貧”,投入資金1280萬元用于異地安置,并規劃投入資金逐年增加,2017年在2015年的基礎上增加投入資金1600萬元.從2015年到2017年,該地投入異地安置資金的年平均增長率為多少?在2017年異地安置的具體實施中,該地計劃投入資金不低于500萬元用于優先搬遷租房獎勵,規定前1000戶(含第1000戶)每戶每天獎勵8元,1000戶以后每戶每天補助5元,按租房400天計算,試求今年該地至少有多少戶享受到優先搬遷租房獎勵?22.(8分)某初級中學正在展開“文明城市創建人人參與,志愿服務我當先行”的“創文活動”為了了解該校志愿者參與服務情況,現對該校全體志愿者進行隨機抽樣調查.根據調查數據繪制了如下所示不完整統計圖.條形統計圖中七年級、八年級、九年級、教師分別指七年級、八年級、九年級、教師志愿者中被抽到的志愿者,扇形統計圖中的百分數指的是該年級被抽到的志愿者數與樣本容量的比.請補全條形統計圖;若該校共有志愿者600人,則該校九年級大約有多少志愿者?23.(8分)已知AC,EC分別為四邊形ABCD和EFCG的對角線,點E在△ABC內,∠CAE+∠CBE=1.(1)如圖①,當四邊形ABCD和EFCG均為正方形時,連接BF.i)求證:△CAE∽△CBF;ii)若BE=1,AE=2,求CE的長;(2)如圖②,當四邊形ABCD和EFCG均為矩形,且時,若BE=1,AE=2,CE=3,求k的值;(3)如圖③,當四邊形ABCD和EFCG均為菱形,且∠DAB=∠GEF=45°時,設BE=m,AE=n,CE=p,試探究m,n,p三者之間滿足的等量關系.(直接寫出結果,不必寫出解答過程)24.(10分)“春節”是我國的傳統佳節,民間歷來有吃“湯圓”的習俗.某食品廠為了解市民對去年銷量較好的肉餡(A)、豆沙餡(B)、菜餡(C)、三丁餡(D)四種不同口味湯圓的喜愛情況,在節前對某居民區市民進行了抽樣調查,并將調查情況繪制成如下兩幅統計圖(尚不完整).請根據以上信息回答:(1)本次參加抽樣調查的居民人數是人;(2)將圖①②補充完整;(直接補填在圖中)(3)求圖②中表示“A”的圓心角的度數;(4)若居民區有8000人,請估計愛吃D湯圓的人數.25.(10分)如圖1為某教育網站一周內連續7天日訪問總量的條形統計圖,如圖2為該網站本周學生日訪問量占日訪問總量的百分比統計圖.請你根據統計圖提供的信息完成下列填空:這一周訪問該網站一共有萬人次;周日學生訪問該網站有萬人次;周六到周日學生訪問該網站的日平均增長率為.26.(12分)如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過點C的切線互相垂直,垂足為D,AB,DC的延長線交于點E.(1)求證:AC平分∠DAB;(2)若BE=3,CE=3,求圖中陰影部分的面積.27.(12分)由甲、乙兩個工程隊承包某校校園的綠化工程,甲、乙兩隊單獨完成這項工作所需的時間比是3∶2,兩隊共同施工6天可以完成.(1)求兩隊單獨完成此項工程各需多少天?(2)此項工程由甲、乙兩隊共同施工6天完成任務后,學校付給他們4000元報酬,若按各自完成的工程量分配這筆錢,問甲、乙兩隊各應得到多少元?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】
根據同底數冪的除法法則:底數不變,指數相減;同底數冪的乘法法則:同底數冪相乘,底數不變,指數相加;冪的乘方法則:底數不變,指數相乘;積的乘方法則:把每一個因式分別乘方,再把所得的冪相乘進行計算即可.【題目詳解】解:A、x2÷x8=x-6,故該選項正確;
B、a?a2=a3,故該選項錯誤;
C、(a2)3=a6,故該選項錯誤;
D、(3a)3=27a3,故該選項錯誤;
故選A.【題目點撥】此題主要考查了同底數冪的乘除法、冪的乘方和積的乘方,關鍵是掌握相關運算法則.2、C【解題分析】試題解析:∵am=2,an=3,
∴a3m+2n
=a3m?a2n
=(am)3?(an)2
=23×32
=8×9
=1.故選C.3、B【解題分析】
先根據多項式乘以多項式的法則,將(x-2)(x+3)展開,再根據兩個多項式相等的條件即可確定p、q的值.【題目詳解】解:∵(x-2)(x+3)=x2+x-1,
又∵(x-2)(x+3)=x2+px+q,
∴x2+px+q=x2+x-1,
∴p=1,q=-1.
故選:B.【題目點撥】本題主要考查多項式乘以多項式的法則及兩個多項式相等的條件.多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加.兩個多項式相等時,它們同類項的系數對應相等.4、A【解題分析】
根據正比例函數的增減性解答即可.【題目詳解】∵正比例函數y=﹣k2x(k≠0),﹣k2<0,∴該函數的圖象中y隨x的增大而減小,∵點M(﹣3,y1),N(﹣4,y2)在正比例函數y=﹣k2x(k≠0)圖象上,﹣4<﹣3,∴y2>y1,故選:A.【題目點撥】本題考查了正比例函數圖象與系數的關系:對于y=kx(k為常數,k≠0),當k>0時,y=kx的圖象經過一、三象限,y隨x的增大而增大;當k<0時,y=kx的圖象經過二、四象限,y隨x的增大而減小.5、B【解題分析】
先根據多邊形的內角和公式分別求得正六邊形和正五邊形的每一個內角的度數,再根據多邊形的內角和公式求得∠APG的度數.【題目詳解】(6﹣2)×180°÷6=120°,(5﹣2)×180°÷5=108°,∠APG=(6﹣2)×180°﹣120°×3﹣108°×2=720°﹣360°﹣216°=144°,故選B.【題目點撥】本題考查了多邊形內角與外角,關鍵是熟悉多邊形內角和定理:(n﹣2)?180(n≥3)且n為整數).6、C【解題分析】
根據一次函數與二次函數的圖象的性質,求出k的取值范圍,再逐項判斷即可.【題目詳解】解:A、由一次函數圖象可知,k>0,∴﹣k<0,∴二次函數的圖象開口應該向下,故A選項不合題意;B、由一次函數圖象可知,k>0,∴﹣k<0,-=>0,∴二次函數的圖象開口向下,且對稱軸在x軸的正半軸,故B選項不合題意;C、由一次函數圖象可知,k<0,∴﹣k>0,-=<0,,∴二次函數的圖象開口向上,且對稱軸在x軸的負半軸,一次函數必經過點(2,0),當x=2時,二次函數值y=﹣4k>0,故C選項符合題意;D、由一次函數圖象可知,k<0,∴﹣k>0,-=<0,,∴二次函數的圖象開口向上,且對稱軸在x軸的負半軸,一次函數必經過點(2,0),當x=2時,二次函數值y=﹣4k>0,故D選項不合題意;故選:C.【題目點撥】本題考查一次函數與二次函數的圖象和性質,解決此題的關鍵是熟記圖象的性質,此外,還要主要二次函數的對稱軸、兩圖象的交點的位置等.7、B【解題分析】
將A、B、C、D分別展開,能和原圖相對應的即為正確答案:【題目詳解】A、展開得到,不能和原圖相對應,故本選項錯誤;B、展開得到,能和原圖相對,故本選項正確;C、展開得到,不能和原圖相對應,故本選項錯誤;D、展開得到,不能和原圖相對應,故本選項錯誤.故選B.8、C【解題分析】
俯視圖是從上面所看到的圖形,可根據各幾何體的特點進行判斷.【題目詳解】A.圓錐的俯視圖是圓,中間有一點,故本選項不符合題意,B.幾何體的俯視圖是長方形,故本選項不符合題意,C.三棱柱的俯視圖是三角形,故本選項符合題意,D.圓臺的俯視圖是圓環,故本選項不符合題意,故選C.【題目點撥】此題主要考查了由幾何體判斷三視圖,正確把握觀察角度是解題關鍵.9、A【解題分析】
先根據0<k<1判斷出k-1的符號,進而判斷出函數的增減性,根據1≤x≤1即可得出結論.【題目詳解】∵0<k<1,∴k-1<0,∴此函數是減函數,∵1≤x≤1,∴當x=1時,y最小=1(k-1)+1=1k-1.故選A.【題目點撥】本題考查的是一次函數的性質,熟知一次函數y=kx+b(k≠0)中,當k<0,b>0時函數圖象經過一、二、四象限是解答此題的關鍵.10、B【解題分析】
根據反比例函數中k的幾何意義,過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|解答即可.【題目詳解】解:A、圖形面積為|k|=1;B、陰影是梯形,面積為6;C、D面積均為兩個三角形面積之和,為2×(|k|)=1.故選B.【題目點撥】主要考查了反比例函數中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經??疾榈囊粋€知識點;這里體現了數形結合的思想,做此類題一定要正確理解k的幾何意義.圖象上的點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S的關系即S=|k|.11、D【解題分析】
A選項:把(-2,1)代入解析式得:左邊=右邊,故本選項正確;
B選項:因為-2<0,圖象在第二、四象限,故本選項正確;
C選項:當x<0,且k<0,y隨x的增大而增大,故本選項正確;
D選項:當x>0時,y<0,故本選項錯誤.
故選D.12、D【解題分析】根據“左加右減、上加下減”的原則,將拋物線向左平移1個單位所得直線解析式為:;再向下平移3個單位為:.故選D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解題分析】
解:∵a+b=1,∴原式=故答案為1.【題目點撥】本題考查的是平方差公式的靈活運用.14、10.5【解題分析】
先證△AEB∽△ABC,再利用相似的性質即可求出答案.【題目詳解】解:由題可知,BE⊥AC,DC⊥AC∵BE//DC,∴△AEB∽△ADC,∴,即:,∴CD=10.5(m).故答案為10.5.【題目點撥】本題考查了相似的判定和性質.利用相似的性質列出含所求邊的比例式是解題的關鍵.15、90°.【解題分析】
根據三角形內角和得到∠A+∠B+∠C=180°,而∠C=30°,則可計算出∠A+∠B+=150°,由于∠A﹣∠B=30°,把兩式相加消去∠B即可求得∠A的度數.【題目詳解】解:∵∠A+∠B+∠C=180°,∠C=30°,∴∠A+∠B+=150°,∵∠A﹣∠B=30°,∴2∠A=180°,∴∠A=90°.故答案為:90°.【題目點撥】本題考查了三角形內角和定理:三角形內角和是180°.主要用在求三角形中角的度數.①直接根據兩已知角求第三個角;②依據三角形中角的關系,用代數方法求三個角;③在直角三角形中,已知一銳角可利用兩銳角互余求另一銳角.16、1.【解題分析】
由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行線分線段成比例定理,即可求得答案.【題目詳解】解:∵DE∥BC,∴∠DEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD:DB=AE:EC,∴EC=2AE=2×3=1.故答案為:1.【題目點撥】此題考查了平行線分線段成比例定理以及等腰三角形的判定與性質.注意掌握線段的對應關系是解此題的關鍵.17、3【解題分析】試題分析:如圖,連接AC與BD相交于點O,∵四邊形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案為3.考點:3.菱形的性質;3.解直角三角形;3.網格型.18、【解題分析】
先畫出樹狀圖,用隨意摸出兩個球是紅球的結果個數除以所有可能的結果個數即可.【題目詳解】∵從中隨意摸出兩個球的所有可能的結果個數是12,隨意摸出兩個球是紅球的結果個數是6,∴從中隨意摸出兩個球的概率=;故答案為:.【題目點撥】此題考查的是用列表法或樹狀圖法求概率.列表法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數與總情況數之比.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、見解析【解題分析】試題分析:證明簡單的線段相等,可證線段所在的三角形全等,結合本題,證△ADB≌△AEB即可.試題解析:∵AB=AC,點D是BC的中點,∴AD⊥BC,∴∠ADB=90°.∵AE⊥EB,∴∠E=∠ADB=90°.∵AB平分∠DAE,∴∠BAD=∠BAE.在△ADB和△AEB中,∠E=∠ADB,∠BAD=∠BAE,AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE.20、(1)證明見解析;(2)△APQ是等邊三角形.【解題分析】
(1)根據等邊三角形的性質可得AB=AC,再根據SAS證明△ABP≌△ACQ;(2)根據全等三角形的性質得到AP=AQ,再證∠PAQ=60°,從而得出△APQ是等邊三角形.【題目詳解】證明:(1)∵△ABC為等邊三角形,∴AB=AC,∠BAC=60°,在△ABP和△ACQ中,∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等邊三角形.【題目點撥】本題考查了全等三角形的判定,考查了全等三角形對應邊相等的性質,考查了正三角形的判定,本題中求證,△ABP≌△ACQ是解題的關鍵.21、(1)50%;(2)今年該地至少有1900戶享受到優先搬遷租房獎勵.【解題分析】
(1)設年平均增長率為x,根據“2015年投入資金×(1+增長率)2=2017年投入資金”列出方程,解方程即可;(2)設今年該地有a戶享受到優先搬遷租房獎勵,根據“前1000戶獲得的獎勵總數+1000戶以后獲得的獎勵總和≥500萬”列不等式求解即可.【題目詳解】(1)設該地投入異地安置資金的年平均增長率為x,根據題意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:從2015年到2017年,該地投入異地安置資金的年平均增長率為50%;(2)設今年該地有a戶享受到優先搬遷租房獎勵,根據題意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年該地至少有1900戶享受到優先搬遷租房獎勵.考點:一元二次方程的應用;一元一次不等式的應用.22、(1)作圖見解析;(2)1.【解題分析】試題分析:(1)根據百分比=計算即可解決問題,求出八年級、九年級、被抽到的志愿者人數畫出條形圖即可;(2)用樣本估計總體的思想,即可解決問題;試題解析:解:(1)由題意總人數=20÷40%=50人,八年級被抽到的志愿者:50×30%=15人九年級被抽到的志愿者:50×20%=10人,條形圖如圖所示:(2)該校共有志愿者600人,則該校九年級大約有600×20%=1人.答:該校九年級大約有1名志愿者.23、(1)i)證明見試題解析;ii);(2);(3).【解題分析】
(1)i)由∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于,故△CAE∽△CBF;ii)由,得到BF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,進一步可得到∠EBF=1°,從而有,解得;(2)連接BF,同理可得:∠EBF=1°,由,得到,,故,從而,得到,代入解方程即可;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,故,從而有.【題目詳解】解:(1)i)∵∠ACE+∠ECB=45°,∠BCF+∠ECB=45°,∴∠ACE=∠BCF,又∵,∴△CAE∽△CBF;ii)∵,∴BF=,∵△CAE∽△CBF,∴∠CAE=∠CBF,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴,解得;(2)連接BF,同理可得:∠EBF=1°,∵,∴,,∴,∴,,∴,∴,解得;(3)連接BF,同理可得:∠EBF=1°,過C作CH⊥AB延長線于H,可得:,,∴,∴.【題目點撥】本題考查相似三角形的判定與性質;正方形的性質;矩形的性質;菱形的性質.24、(1)600;(2)120人,20%;30%;(3)108°(4)愛吃D湯圓的人數約為3200人【解題分析】試題分析:(1)由兩幅統計圖中的信息可知,喜歡B類的有60人,占被調查人數的10%,由此即可計算出被調查的總人數為60÷10%=600(人);(2)由(1)中所得被調查總人數為600人結合統計圖中已有的數據可得喜歡C類的人數為:600-180-60-240=120(人),喜歡C類的占總人數的百分比為:120÷600×100%=20%,喜歡A類的占總人數的百分比為:180÷600×100%=30%,由此即可將統計圖補充完整;(3)由(2)中所得數據可得扇形統計圖中A類所對應的圓心角度數為:360°×30%=108°;(4)由扇形統計圖中的信息:喜歡D類的占總人數的40%可得:8000×40%=3200(人);試題解析:(1)本次參加抽樣調查的居民的人數是:60÷10%=600(人);故答案為600;(2)由題意得:C的人數為600﹣(180+60+240)=600﹣480=120(人),C的百分比為120÷600×100%=20%;A的百分比為180÷600×100%=30%;將兩幅統計圖補充完整如下所示:(3)根據題意得:360°×30%=108°,∴圖②中表示“A”的圓心角的度數108°;(4)8000×40%=3200(人),即愛吃D湯圓的人數約為3200人.25、(1)10;(2)0.9;(3)44%【解題分析】
(1)把條形統計圖中每天的訪問量人數相加即可得出答案;(2)由星期日的日訪問總量為3萬人次,結合扇形統計圖可得星期日學生日訪問總量占日訪問總量的百分比為30%,繼而求得星期日學生日訪問總量;(3)根據增長率的算數列出算式,再進行計算即可.【題目詳解】(1)這一周該網站訪問總量為:0.5+1+0.5+1+1.5+2.5+3=10(萬人次);故答案為10;(2)∵星期日的日訪問總量為3萬人次,星期日學生日訪問總量占日訪問總量的百分比為30%,∴星期日學生日訪問總量為:3×30%=0.9(萬人次);故答案為0.9;(3)周六到周日學生訪問該網站的日平均增長率
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 六一活動自主策劃方案
- 六一童鞋打折活動方案
- 六一職工親子活動方案
- 六一資助活動方案
- 六一造勢活動方案
- 六下數學教研活動方案
- 六安幼兒園家長活動方案
- 醫療設備制度考試試題及答案
- 一??荚囋囶}及答案美術
- 安全生產常識試題及答案
- 2025年黑龍江、吉林、遼寧、內蒙古高考生物真題試卷(解析版)
- 2025年藝術與數字藝術類事業單位招聘考試綜合類專業能力測試試卷
- 福建省泉州市晉江市2025屆數學七下期末調研試題含解析
- 山西省運城市2025年中考一模語文試題(含答案)
- 電影放映員試題及答案
- 青科綜評面試真題及答案
- 2023年貴州省糧食儲備集團有限公司面向社會公開招聘工作人員15人筆試參考題庫附帶答案詳解
- 痘痘專業知識課件圖
- 超星爾雅學習通《國家安全教育(中國人民公安大學)》2025章節測試附答案
- 艾梅乙防治知識培訓課件
- 胸腔穿刺術護理查房
評論
0/150
提交評論