




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川省成都市實驗外國語校2024屆中考數學全真模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,嘉淇同學拿20元錢正在和售貨員對話,且一本筆記本比一支筆貴3元,請你仔細看圖,1本筆記本和1支筆的單價分別為()A.5元,2元 B.2元,5元C.4.5元,1.5元 D.5.5元,2.5元2.如圖,小明將一張長為20cm,寬為15cm的長方形紙(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,則剪去的直角三角形的斜邊長為()A.5cm B.12cm C.16cm D.20cm3.在平面直角坐標系xOy中,將一塊含有45°角的直角三角板如圖放置,直角頂點C的坐標為(1,0),頂點A的坐標為(0,2),頂點B恰好落在第一象限的雙曲線上,現將直角三角板沿x軸正方向平移,當頂點A恰好落在該雙曲線上時停止運動,則此時點C的對應點C′的坐標為()A.(,0) B.(2,0) C.(,0) D.(3,0)4.在一個不透明的袋子里裝有兩個黃球和一個白球,它們除顏色外都相同,隨機從中摸出一個球,記下顏色后放回袋子中,充分搖勻后,再隨機摸出一個球.兩次都摸到黃球的概率是()A. B. C. D.5.下列敘述,錯誤的是()A.對角線互相垂直且相等的平行四邊形是正方形B.對角線互相垂直平分的四邊形是菱形C.對角線互相平分的四邊形是平行四邊形D.對角線相等的四邊形是矩形6.下列成語描述的事件為隨機事件的是()A.水漲船高B.守株待兔C.水中撈月D.緣木求魚7.在實數0,-π,,-4中,最小的數是()A.0 B.-π C. D.-48.如圖,A、B兩點在雙曲線y=上,分別經過A、B兩點向軸作垂線段,已知S陰影=1,則S1+S2=()A.3 B.4 C.5 D.69.如圖,在矩形ABCD中,AB=2a,AD=a,矩形邊上一動點P沿A→B→C→D的路徑移動.設點P經過的路徑長為x,PD2=y,則下列能大致反映y與x的函數關系的圖象是()A. B.C. D.10.若分式方程無解,則a的值為()A.0 B.-1 C.0或-1 D.1或-111.下列運算結果正確的是()A.(x3﹣x2+x)÷x=x2﹣xB.(﹣a2)?a3=a6C.(﹣2x2)3=﹣8x6D.4a2﹣(2a)2=2a212.下列運算正確的是()A.a12÷a4=a3 B.a4?a2=a8 C.(﹣a2)3=a6 D.a?(a3)2=a7二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知一個菱形的邊長為5,其中一條對角線長為8,則這個菱形的面積為_____.14.分解因式:ax2﹣2ax+a=___________.15.如圖,已知直線y=x+4與雙曲線y=(x<0)相交于A、B兩點,與x軸、y軸分別相交于D、C兩點,若AB=2,則k=_____.16.等腰中,是BC邊上的高,且,則等腰底角的度數為__________.17.如圖,已知函數y=x+2的圖象與函數y=(k≠0)的圖象交于A、B兩點,連接BO并延長交函數y=(k≠0)的圖象于點C,連接AC,若△ABC的面積為1.則k的值為_____.18.二次函數的圖象與y軸的交點坐標是________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖所示,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE交BC于點E,連接DE.(1)求證:四邊形ABED是菱形;(2)若∠ABC=60°,CE=2BE,試判斷△CDE的形狀,并說明理由.20.(6分)如圖,已知正方形ABCD的邊長為4,點P是AB邊上的一個動點,連接CP,過點P作PC的垂線交AD于點E,以PE為邊作正方形PEFG,頂點G在線段PC上,對角線EG、PF相交于點O.(1)若AP=1,則AE=;(2)①求證:點O一定在△APE的外接圓上;②當點P從點A運動到點B時,點O也隨之運動,求點O經過的路徑長;(3)在點P從點A到點B的運動過程中,△APE的外接圓的圓心也隨之運動,求該圓心到AB邊的距離的最大值.21.(6分)如圖,在矩形ABCD中,E是BC邊上的點,,垂足為F.(1)求證:;(2)如果,求的余切值.22.(8分)拋物線經過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.求此拋物線的解析式;已知點D在第四象限的拋物線上,求點D關于直線BC對稱的點D’的坐標;在(2)的條件下,連結BD,問在x軸上是否存在點P,使,若存在,請求出P點的坐標;若不存在,請說明理由.23.(8分)如圖1,在直角梯形ABCD中,動點P從B點出發,沿B→C→D→A勻速運動,設點P運動的路程為x,△ABP的面積為y,圖象如圖2所示.(1)在這個變化中,自變量、因變量分別是、;(2)當點P運動的路程x=4時,△ABP的面積為y=;(3)求AB的長和梯形ABCD的面積.24.(10分)如圖,直線AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度數.25.(10分)某居民小區一處圓柱形的輸水管道破裂,維修人員為更換管道,需確定管道圓形截面的半徑,如圖是水平放置的破裂管道有水部分的截面.(1)請你用直尺和圓規作出這個輸水管道的圓形截面的圓心(保留作圖痕跡);(2)若這個輸水管道有水部分的水面寬AB=8cm,水面最深地方的高度為2cm,求這個圓形截面的半徑.26.(12分)正方形ABCD中,點P為直線AB上一個動點(不與點A,B重合),連接DP,將DP繞點P旋轉90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N.問題出現:(1)當點P在線段AB上時,如圖1,線段AD,AP,DM之間的數量關系為;題探究:(2)①當點P在線段BA的延長線上時,如圖2,線段AD,AP,DM之間的數量關系為;②當點P在線段AB的延長線上時,如圖3,請寫出線段AD,AP,DM之間的數量關系并證明;問題拓展:(3)在(1)(2)的條件下,若AP=,∠DEM=15°,則DM=.27.(12分)由于霧霾天氣對人們健康的影響,市場上的空氣凈化器成了熱銷產品.某公司經銷一種空氣凈化器,每臺凈化器的成本價為200元.經過一段時間的銷售發現,每月的銷售量y(臺)與銷售單價x(元)的關系為y=﹣2x+1.(1)該公司每月的利潤為w元,寫出利潤w與銷售單價x的函數關系式;(2)若要使每月的利潤為40000元,銷售單價應定為多少元?(3)公司要求銷售單價不低于250元,也不高于400元,求該公司每月的最高利潤和最低利潤分別為多少?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解題分析】
可設1本筆記本的單價為x元,1支筆的單價為y元,由題意可得等量關系:①3本筆記本的費用+2支筆的費用=19元,②1本筆記本的費用﹣1支筆的費用=3元,根據等量關系列出方程組,再求解即可.【題目詳解】設1本筆記本的單價為x元,1支筆的單價為y元,依題意有:,解得:.故1本筆記本的單價為5元,1支筆的單價為2元.故選A.【題目點撥】本題考查了二元一次方程組的應用,關鍵是正確理解題意,找出題目中的等量關系設出未知數,列出方程組.2、D【解題分析】
解答此題要延長AB、DC相交于F,則BFC構成直角三角形,再用勾股定理進行計算.【題目詳解】延長AB、DC相交于F,則BFC構成直角三角形,運用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.則剪去的直角三角形的斜邊長為1cm.故選D.【題目點撥】本題主要考查了勾股定理的應用,解答此題要延長AB、DC相交于F,構造直角三角形,用勾股定理進行計算.3、C【解題分析】
過點B作BD⊥x軸于點D,易證△ACO≌△BCD(AAS),從而可求出B的坐標,進而可求出反比例函數的解析式,根據解析式與A的坐標即可得知平移的單位長度,從而求出C的對應點.【題目詳解】解:過點B作BD⊥x軸于點D,∵∠ACO+∠BCD=90°,∠OAC+∠ACO=90°,∴∠OAC=∠BCD,在△ACO與△BCD中,∴△ACO≌△BCD(AAS)∴OC=BD,OA=CD,∵A(0,2),C(1,0)∴OD=3,BD=1,∴B(3,1),∴設反比例函數的解析式為y=,將B(3,1)代入y=,∴k=3,∴y=,∴把y=2代入y=,∴x=,當頂點A恰好落在該雙曲線上時,此時點A移動了個單位長度,∴C也移動了個單位長度,此時點C的對應點C′的坐標為(,0)故選:C.【題目點撥】本題考查反比例函數的綜合問題,涉及全等三角形的性質與判定,反比例函數的解析式,平移的性質等知識,綜合程度較高,屬于中等題型.4、A【解題分析】
首先根據題意畫出樹狀圖,由樹狀圖求得所有等可能的結果與兩次都摸到黃球的情況,然后利用概率公式求解即可求得答案.注意此題屬于放回實驗.【題目詳解】畫樹狀圖如下:由樹狀圖可知,共有9種等可能結果,其中兩次都摸到黃球的有4種結果,∴兩次都摸到黃球的概率為,故選A.【題目點撥】此題考查的是用列表法或樹狀圖法求概率的知識.注意畫樹狀圖與列表法可以不重復不遺漏的列出所有可能的結果,列表法適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.5、D【解題分析】【分析】根據正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定定理對選項逐一進行分析,即可判斷出答案.【題目詳解】A.對角線互相垂直且相等的平行四邊形是正方形,正確,不符合題意;B.對角線互相垂直平分的四邊形是菱形,正確,不符合題意;C.對角線互相平分的四邊形是平行四邊形,正確,不符合題意;D.對角線相等的平行四邊形是矩形,故D選項錯誤,符合題意,故選D.【題目點撥】本題考查了正方形的判定、平行四邊形的判定、菱形的判定和矩形的判定等,熟練掌握相關判定定理是解答此類問題的關鍵.6、B【解題分析】試題解析:水漲船高是必然事件,A不正確;守株待兔是隨機事件,B正確;水中撈月是不可能事件,C不正確緣木求魚是不可能事件,D不正確;故選B.考點:隨機事件.7、D【解題分析】
根據正數都大于0,負數都小于0,兩個負數絕對值大的反而小即可求解.【題目詳解】∵正數大于0和一切負數,∴只需比較-π和-1的大小,∵|-π|<|-1|,∴最小的數是-1.故選D.【題目點撥】此題主要考查了實數的大小的比較,注意兩個無理數的比較方法:統一根據二次根式的性質,把根號外的移到根號內,只需比較被開方數的大小.8、D【解題分析】
欲求S1+S1,只要求出過A、B兩點向x軸、y軸作垂線段與坐標軸所形成的矩形的面積即可,而矩形面積為雙曲線y=的系數k,由此即可求出S1+S1.【題目詳解】∵點A、B是雙曲線y=上的點,分別經過A、B兩點向x軸、y軸作垂線段,
則根據反比例函數的圖象的性質得兩個矩形的面積都等于|k|=4,
∴S1+S1=4+4-1×1=2.
故選D.9、D【解題分析】解:(1)當0≤t≤2a時,∵,AP=x,∴;(2)當2a<t≤3a時,CP=2a+a﹣x=3a﹣x,∵,∴=;(3)當3a<t≤5a時,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;綜上,可得,∴能大致反映y與x的函數關系的圖象是選項D中的圖象.故選D.10、D【解題分析】試題分析:在方程兩邊同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,當1-a=0時,即a=1,整式方程無解,當x+1=0,即x=-1時,分式方程無解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故選D.點睛:本題考查了分式方程的解,解決本題的關鍵是熟記分式方程無解的條件.11、C【解題分析】
根據多項式除以單項式法則、同底數冪的乘法、積的乘方與冪的乘方及合并同類項法則計算可得.【題目詳解】A、(x3-x2+x)÷x=x2-x+1,此選項計算錯誤;B、(-a2)?a3=-a5,此選項計算錯誤;C、(-2x2)3=-8x6,此選項計算正確;D、4a2-(2a)2=4a2-4a2=0,此選項計算錯誤.故選:C.【題目點撥】本題主要考查整式的運算,解題的關鍵是掌握多項式除以單項式法則、同底數冪的乘法、積的乘方與冪的乘方及合并同類項法則.12、D【解題分析】
分別根據同底數冪的除法、乘法和冪的乘方的運算法則逐一計算即可得.【題目詳解】解:A、a12÷a4=a8,此選項錯誤;
B、a4?a2=a6,此選項錯誤;
C、(-a2)3=-a6,此選項錯誤;
D、a?(a3)2=a?a6=a7,此選項正確;
故選D.【題目點撥】本題主要考查冪的運算,解題的關鍵是掌握同底數冪的除法、乘法和冪的乘方的運算法則.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解題分析】試題解析:如圖,∵菱形ABCD中,BD=8,AB=5,∴AC⊥BD,OB=BD=4,∴OA==3,∴AC=2OA=6,∴這個菱形的面積為:AC?BD=×6×8=1.14、a(x-1)1.【解題分析】
先提取公因式a,再對余下的多項式利用完全平方公式繼續分解.【題目詳解】解:ax1-1ax+a,
=a(x1-1x+1),
=a(x-1)1.【題目點撥】本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.15、-3【解題分析】設A(a,a+4),B(c,c+4),則解得:x+4=,即x2+4x?k=0,∵直線y=x+4與雙曲線y=相交于A、B兩點,∴a+c=?4,ac=-k,∴(c?a)2=(c+a)2?4ac=16+4k,∵AB=,∴由勾股定理得:(c?a)2+[c+4?(a+4)]2=()2,2(c?a)2=8,(c?a)2=4,∴16+4k=4,解得:k=?3,故答案為?3.點睛:本題考查了一次函數與反比例函數的交點問題、根與系數的關系、勾股定理、圖象上點的坐標特征等,題目具有一定的代表性,綜合性強,有一定難度.16、,,【解題分析】
分三種情況:①點A是頂角頂點時,②點A是底角頂點,且AD在△ABC外部時,③點A是底角頂點,且AD在△ABC內部時,再結合直角三角形中,30°的角所對的直角邊等于斜邊的一半即可求解.【題目詳解】①如圖,若點A是頂角頂點時,∵AB=AC,AD⊥BC,∴BD=CD,∵,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=;②如圖,若點A是底角頂點,且AD在△ABC外部時,∵,AC=BC,∴,∴∠ACD=30°,∴∠BAC=∠ABC=×30°=15°;③如圖,若點A是底角頂點,且AD在△ABC內部時,∵,AC=BC,∴,∴∠C=30°,∴∠BAC=∠ABC=(180°-30°)=75°;綜上所述,△ABC底角的度數為45°或15°或75°;故答案為,,.【題目點撥】本題考查了等腰三角形的性質和直角三角形中30°的角所對的直角邊等于斜邊的一半的性質,解題的關鍵是要分情況討論.17、3【解題分析】
連接OA.根據反比例函數的對稱性可得OB=OC,那么S△OAB=S△OAC=S△ABC=2.求出直線y=x+2與y軸交點D的坐標.設A(a,a+2),B(b,b+2),則C(-b,-b-2),根據S△OAB=2,得出a-b=2
①.根據S△OAC=2,得出-a-b=2
②,①與②聯立,求出a、b的值,即可求解.【題目詳解】如圖,連接OA.由題意,可得OB=OC,∴S△OAB=S△OAC=S△ABC=2.設直線y=x+2與y軸交于點D,則D(0,2),設A(a,a+2),B(b,b+2),則C(-b,-b-2),∴S△OAB=×2×(a-b)=2,∴a-b=2
①.過A點作AM⊥x軸于點M,過C點作CN⊥x軸于點N,則S△OAM=S△OCN=k,∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,∴(-b-2+a+2)(-b-a)=2,將①代入,得∴-a-b=2
②,①+②,得-2b=6,b=-3,①-②,得2a=2,a=1,∴A(1,3),∴k=1×3=3.故答案為3.【題目點撥】本題考查了反比例函數與一次函數的交點問題,反比例函數的性質,反比例函數圖象上點的坐標特征,三角形的面積,待定系數法求函數的解析式等知識,綜合性較強,難度適中.根據反比例函數的對稱性得出OB=OC是解題的突破口.18、【解題分析】
求出自變量x為1時的函數值即可得到二次函數的圖象與y軸的交點坐標.【題目詳解】把代入得:,∴該二次函數的圖象與y軸的交點坐標為,故答案為.【題目點撥】本題考查了二次函數圖象上點的坐標特征,在y軸上的點的橫坐標為1.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、見解析【解題分析】試題分析:(1)先證得四邊形ABED是平行四邊形,又AB=AD,鄰邊相等的平行四邊形是菱形;(2)四邊形ABED是菱形,∠ABC=60°,所以∠DEC=60°,AB=ED,又EC=2BE,EC=2DE,可得△DEC是直角三角形.試題解析:梯形ABCD中,AD∥BC,∴四邊形ABED是平行四邊形,又AB=AD,∴四邊形ABED是菱形;(2)∵四邊形ABED是菱形,∠ABC=60°,∴∠DEC=60°,AB=ED,又EC=2BE,∴EC=2DE,∴△DEC是直角三角形,考點:1.菱形的判定;2.直角三角形的性質;3.平行四邊形的判定20、(1)34;(2)①證明見解析;②22;(3)【解題分析】試題分析:(1)由正方形的性質得出∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,由角的互余關系證出∠AEP=∠PBC,得出△APE∽△BCP,得出對應邊成比例即可求出AE的長;(2)①A、P、O、E四點共圓,即可得出結論;②連接OA、AC,由勾股定理求出AC=42,由圓周角定理得出∠OAP=∠OEP=45°,周長點O在AC上,當P運動到點B時,O為AC(3)設△APE的外接圓的圓心為M,作MN⊥AB于N,由三角形中位線定理得出MN=12AE,設AP=x,則BP=4﹣x,由相似三角形的對應邊成比例求出AE的表達式,由二次函數的最大值求出AE的最大值為1,得出MN的最大值=1試題解析:(1)∵四邊形ABCD、四邊形PEFG是正方形,∴∠A=∠B=∠EPG=90°,PF⊥EG,AB=BC=4,∠OEP=45°,∴∠AEP+∠APE=90°,∠BPC+∠APE=90°,∴∠AEP=∠PBC,∴△APE∽△BCP,∴AEBP=APBC,即AE4-1故答案為:34(2)①∵PF⊥EG,∴∠EOF=90°,∴∠EOF+∠A=180°,∴A、P、O、E四點共圓,∴點O一定在△APE的外接圓上;②連接OA、AC,如圖1所示:∵四邊形ABCD是正方形,∴∠B=90°,∠BAC=45°,∴AC=42+4∵A、P、O、E四點共圓,∴∠OAP=∠OEP=45°,∴點O在AC上,當P運動到點B時,O為AC的中點,OA=12AC=2即點O經過的路徑長為22(3)設△APE的外接圓的圓心為M,作MN⊥AB于N,如圖2所示:則MN∥AE,∵ME=MP,∴AN=PN,∴MN=12AE設AP=x,則BP=4﹣x,由(1)得:△APE∽△BCP,∴AEBP=APBC,即AE4-x=x∴x=2時,AE的最大值為1,此時MN的值最大=12×1=1即△APE的圓心到AB邊的距離的最大值為12【題目點撥】本題考查圓、二次函數的最值等,正確地添加輔助線,根據已知證明△APE∽△BCP是解題的關鍵.21、(1)見解析;(2).【解題分析】
(1)矩形的性質得到,得到,根據定理證明;(2)根據全等三角形的性質、勾股定理、余切的定義計算即可.【題目詳解】解:(1)證明:四邊形是矩形,,,在和中,,,;(2),,設,,,,,,,,.【題目點撥】本題考查的是矩形的性質、勾股定理的運用、全等三角形的判定和性質以及余切的定義,掌握全等三角形的判定定理和性質定理是解題的關鍵.22、(1)(2)(0,-1)(3)(1,0)(9,0)【解題分析】
(1)將A(?1,0)、C(0,?3)兩點坐標代入拋物線y=ax2+bx?3a中,列方程組求a、b的值即可;(2)將點D(m,?m?1)代入(1)中的拋物線解析式,求m的值,再根據對稱性求點D關于直線BC對稱的點D'的坐標;(3)分兩種情形①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,②連接BD′,過點C作CP′∥BD′,交x軸于P′,分別求出直線CP和直線CP′的解析式即可解決問題.【題目詳解】解:(1)將A(?1,0)、C(0,?3)代入拋物線y=ax2+bx?3a中,得,解得∴y=x2?2x?3;(2)將點D(m,?m?1)代入y=x2?2x?3中,得m2?2m?3=?m?1,解得m=2或?1,∵點D(m,?m?1)在第四象限,∴D(2,?3),∵直線BC解析式為y=x?3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3?2=1,∴點D關于直線BC對稱的點D'(0,?1);(3)存在.滿足條件的點P有兩個.①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,∵直線BD解析式為y=3x?9,∵直線CP過點C,∴直線CP的解析式為y=3x?3,∴點P坐標(1,0),②連接BD′,過點C作CP′∥BD′,交x軸于P′,∴∠P′CB=∠D′BC,根據對稱性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直線BD′的解析式為∵直線CP′過點C,∴直線CP′解析式為,∴P′坐標為(9,0),綜上所述,滿足條件的點P坐標為(1,0)或(9,0).【題目點撥】本題考查了二次函數的綜合運用.關鍵是由已知條件求拋物線解析式,根據拋物線的對稱性,直線BC的特殊性求點的坐標,學會分類討論,不能漏解.23、(1)x,y;(2)2;(3)AB=8,梯形ABCD的面積=1.【解題分析】
(1)依據點P運動的路程為x,△ABP的面積為y,即可得到自變量和因變量;(2)依據函數圖象,即可得到點P運動的路程x=4時,△ABP的面積;(3)根據圖象得出BC的長,以及此時三角形ABP面積,利用三角形面積公式求出AB的長即可;由函數圖象得出DC的長,利用梯形面積公式求出梯形ABCD面積即可.【題目詳解】(1)∵點P運動的路程為x,△ABP的面積為y,∴自變量為x,因變量為y.故答案為x,y;(2)由圖可得:當點P運動的路程x=4時,△ABP的面積為y=2.故答案為2;(3)根據圖象得:BC=4,此時△ABP為2,∴AB?BC=2,即×AB×4=2,解得:AB=8;由圖象得:DC=9﹣4=5,則S梯形ABCD=×BC×(DC+AB)=×4×(5+8)=1.【題目點撥】本題考查了動點問題的函數圖象,弄清函數圖象上的信息是解答本題的關鍵.24、50°.【解題分析】
試題分析:由平行線的性質得到∠ABC=∠1=65°,∠ABD+∠BDE=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到結論.解:∵AB∥CD,∴∠ABC=∠1=65°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDE=180°﹣∠ABD=50°,∴∠2=∠BDE=50°.【點評】本題考查了平行線的性質和角平分線定義等知識點,解此題的關鍵是求出∠ABD的度數,題目較好,難度不大.25、(1)詳見解析;(2)這個圓形截面的半徑是5cm.【解題分析】
(1)根據尺規作圖的步驟和方法做出圖即可;(2)先過圓心作半徑,交于點,設半徑為,得出、的長,在中,根據勾股定理求出這個圓形截面的半徑.【題目詳解】(1)如圖,作線段AB的垂直平分線l,與弧AB交于點C,作線段AC的垂直平分線l′與直線l交于點O,點O即為所求作的圓心.(2)如圖,過圓心O作半徑CO⊥AB,交AB于點D,設半徑為r,則AD=AB=4,OD=r-2,在Rt△AOD中,r2=42+(r-2)2,解得r=5,答:這個圓形截面的半徑是5cm.【題目點撥】此題考查了垂徑定理和勾股定理,關鍵是根據題意畫出圖形,再根據勾股定理進行求解.26、(1)DM=AD+AP;(2)①DM=AD﹣AP;②DM=AP﹣AD;(3)3﹣或﹣1.【解題分析】
(1)根據正方形的性質和全等三角形的判定和性質得出△ADP≌△PFN,進而解答即可;(2)①根據正方形的性質和全等三角形的判定和性質得出△ADP≌△PFN,進而解答即可;②根據正方形的性質和全等三角形的判定和性質得出△ADP≌△PFN,進而解答即可;(3)分兩種情況利用勾股定理和三角函數解答即可.【題目詳解】(1)DM=AD+AP,理由如下:∵正方形ABCD,∴DC=AB,∠DAP=90°,∵將DP繞點P旋轉90°得到EP,連接DE,過點E作CD的垂線,交射線DC于M,交射線AB于N,∴DP=PE,∠PNE=90°,∠DPE=90°,∵∠ADP+∠DPA=90°,∠DPA+∠EPN=90°,∴∠DAP=∠EPN,在△ADP與△NPE中,,∴△ADP≌△NPE(AAS),∴AD=PN,AP=EN,∴AN=DM=AP+PN
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 藥品配送運輸管理制度
- 藥店中藥銷售管理制度
- 藥店店長培訓管理制度
- 莘縣食堂安全管理制度
- 設備人員安全管理制度
- 設備借用歸還管理制度
- 設備安裝流程管理制度
- 設備施工工程管理制度
- 設備點檢日常管理制度
- 設備維修現場管理制度
- 婦幼保健機構績效考核評分細則
- 【高分復習資料】山東大學《244德語》歷年考研真題匯編
- (新版)山東省物流工程師職稱考試參考試題庫-下(多選、判斷題)
- 青年興則國家興青年強則國家強
- 全國行業職業技能競賽(電力交易員)考試題庫及答案
- DB50-T 1293-2022 松材線蟲病疫木除治技術規范
- 山東省青島市英語中考試題及解答參考(2025年)
- 多功能熱洗車熱洗清蠟QHSE作業指導書及操作規程
- 2024年北京中考地理試卷
- 液化石油氣站規章制度2024
- (安全生產)煤礦安全生產監管檢查清單
評論
0/150
提交評論