2024屆長春市第七十二中學中考數學押題試卷含解析_第1頁
2024屆長春市第七十二中學中考數學押題試卷含解析_第2頁
2024屆長春市第七十二中學中考數學押題試卷含解析_第3頁
2024屆長春市第七十二中學中考數學押題試卷含解析_第4頁
2024屆長春市第七十二中學中考數學押題試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024學年長春市第七十二中學中考數學押題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.明明和亮亮都在同一直道A、B兩地間做勻速往返走鍛煉明明的速度小于亮亮的速度忽略掉頭等時間明明從A地出發,同時亮亮從B地出發圖中的折線段表示從開始到第二次相遇止,兩人之間的距離米與行走時間分的函數關系的圖象,則A.明明的速度是80米分 B.第二次相遇時距離B地800米C.出發25分時兩人第一次相遇 D.出發35分時兩人相距2000米2.下列各式中計算正確的是()A.x3?x3=2x6 B.(xy2)3=xy6 C.(a3)2=a5 D.t10÷t9=t3.《孫子算經》是中國古代重要的數學著作,成書于約一千五百年前,其中有首歌謠:今有竿不知其長,量得影長一丈五尺,立一標桿,長一尺五寸,影長五寸,問竿長幾何?意即:有一根竹竿不知道有多長,量出它在太陽下的影子長一丈五尺,同時立一根一尺五寸的小標桿,它的影長五寸(提示:1丈=10尺,1尺=10寸),則竹竿的長為()A.五丈 B.四丈五尺 C.一丈 D.五尺4.如果一組數據6,7,x,9,5的平均數是2x,那么這組數據的中位數為()A.5 B.6 C.7 D.95.下列判斷正確的是()A.任意擲一枚質地均勻的硬幣10次,一定有5次正面向上B.天氣預報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨C.“籃球隊員在罰球線上投籃一次,投中”為隨機事件D.“a是實數,|a|≥0”是不可能事件6.如圖所示,的頂點是正方形網格的格點,則的值為()A. B. C. D.7.將拋物線向左平移1個單位,再向下平移3個單位后所得拋物線的解析式為()A. B. C. D.8.“趙爽弦圖”巧妙地利用面積關系證明了勾股定理,是我國古代數學的驕傲,如圖所示的“趙爽弦圖”是由四個全等的直角三角形和一個小正方形拼成的一個大正方形,設直角三角形較長直角邊長為a,較短直角邊長為b,若,大正方形的面積為13,則小正方形的面積為()A.3 B.4 C.5 D.69.某車間20名工人日加工零件數如表所示:日加工零件數45678人數26543這些工人日加工零件數的眾數、中位數、平均數分別是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、610.如圖,點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直線交菱形ABCD的邊于M、N兩點.設AC=2,BD=1,AP=x,△AMN的面積為y,則y關于x的函數圖象大致形狀是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,AB是⊙O的直徑,AB=2,點C在⊙O上,∠CAB=30°,D為的中點,P是直徑AB上一動點,則PC+PD的最小值為________.12.的倒數是_____________.13.2的平方根是_________.14.若﹣4xay+x2yb=﹣3x2y,則a+b=_____.15.如圖,E是?ABCD的邊AD上一點,AE=1216.如圖,這是由邊長為1的等邊三角形擺出的一系列圖形,按這種方式擺下去,則第n個圖形的周長是___.17.已知方程x2﹣5x+2=0的兩個解分別為x1、x2,則x1+x2﹣x1?x2的值為______.三、解答題(共7小題,滿分69分)18.(10分)如圖,已知AB是圓O的直徑,弦CD⊥AB,垂足H在半徑OB上,AH=5,CD=,點E在弧AD上,射線AE與CD的延長線交于點F.(1)求圓O的半徑;(2)如果AE=6,求EF的長.19.(5分)(1)解方程:=0;(2)解不等式組,并把所得解集表示在數軸上.20.(8分)在平面直角坐標系xOy中,若拋物線頂點A的橫坐標是,且與y軸交于點,點P為拋物線上一點.求拋物線的表達式;若將拋物線向下平移4個單位,點P平移后的對應點為如果,求點Q的坐標.21.(10分)為提高節水意識,小申隨機統計了自己家7天的用水量,并分析了第3天的用水情況,將得到的數據進行整理后,繪制成如圖所示的統計圖.(單位:升)(1)求這7天內小申家每天用水量的平均數和中位數;(2)求第3天小申家洗衣服的水占這一天總用水量的百分比;(3)請你根據統計圖中的信息,給小申家提出一條合理的節約用水建議,并估算采用你的建議后小申家一個月(按30天計算)的節約用水量.22.(10分)“食品安全”受到全社會的廣泛關注,我區兼善中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調查的方式,并根據收集到的信息進行統計,繪制了下面的兩幅尚不完整的統計圖,請你根據統計圖中所提供的信息解答下列問題:(1)接受問卷調查的學生共有人,扇形統計圖中“基本了解”部分所對應扇形的圓心角為°;(2)請補全條形統計圖;(3)若對食品安全知識達到“了解”程度的學生中,男、女生的比例恰為2:3,現從中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.23.(12分)如圖,四邊形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足為E,求證:AE=CE.24.(14分)某公司投入研發費用80萬元(80萬元只計入第一年成本),成功研發出一種產品.公司按訂單生產(產量=銷售量),第一年該產品正式投產后,生產成本為6元/件.此產品年銷售量y(萬件)與售價x(元/件)之間滿足函數關系式y=﹣x+1.求這種產品第一年的利潤W1(萬元)與售價x(元/件)滿足的函數關系式;該產品第一年的利潤為20萬元,那么該產品第一年的售價是多少?第二年,該公司將第一年的利潤20萬元(20萬元只計入第二年成本)再次投入研發,使產品的生產成本降為5元/件.為保持市場占有率,公司規定第二年產品售價不超過第一年的售價,另外受產能限制,銷售量無法超過12萬件.請計算該公司第二年的利潤W2至少為多少萬元.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解題分析】

C、由二者第二次相遇的時間結合兩次相遇分別走過的路程,即可得出第一次相遇的時間,進而得出C選項錯誤;A、當時,出現拐點,顯然此時亮亮到達A地,利用速度路程時間可求出亮亮的速度及兩人的速度和,二者做差后可得出明明的速度,進而得出A選項錯誤;B、根據第二次相遇時距離B地的距離明明的速度第二次相遇的時間、B兩地間的距離,即可求出第二次相遇時距離B地800米,B選項正確;D、觀察函數圖象,可知:出發35分鐘時亮亮到達A地,根據出發35分鐘時兩人間的距離明明的速度出發時間,即可求出出發35分鐘時兩人間的距離為2100米,D選項錯誤.【題目詳解】解:第一次相遇兩人共走了2800米,第二次相遇兩人共走了米,且二者速度不變,

出發20分時兩人第一次相遇,C選項錯誤;

亮亮的速度為米分,

兩人的速度和為米分,

明明的速度為米分,A選項錯誤;

第二次相遇時距離B地距離為米,B選項正確;

出發35分鐘時兩人間的距離為米,D選項錯誤.

故選:B.【題目點撥】本題考查了一次函數的應用,觀察函數圖象,逐一分析四個選項的正誤是解題的關鍵.2、D【解題分析】試題解析:A、原式計算錯誤,故本選項錯誤;B、原式計算錯誤,故本選項錯誤;C、原式計算錯誤,故本選項錯誤;D、原式計算正確,故本選項正確;故選D.點睛:同底數冪相除,底數不變,指數相減.3、B【解題分析】【分析】根據同一時刻物高與影長成正比可得出結論.【題目詳解】設竹竿的長度為x尺,∵竹竿的影長=一丈五尺=15尺,標桿長=一尺五寸=1.5尺,影長五寸=0.5尺,∴,解得x=45(尺),故選B.【題目點撥】本題考查了相似三角形的應用舉例,熟知同一時刻物髙與影長成正比是解答此題的關鍵.4、B【解題分析】

直接利用平均數的求法進而得出x的值,再利用中位數的定義求出答案.【題目詳解】∵一組數據1,7,x,9,5的平均數是2x,∴,解得:,則從大到小排列為:3,5,1,7,9,故這組數據的中位數為:1.故選B.【題目點撥】此題主要考查了中位數以及平均數,正確得出x的值是解題關鍵.5、C【解題分析】

直接利用概率的意義以及隨機事件的定義分別分析得出答案.【題目詳解】A、任意擲一枚質地均勻的硬幣10次,一定有5次正面向上,錯誤;B、天氣預報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨,錯誤;C、“籃球隊員在罰球線上投籃一次,投中”為隨機事件,正確;D、“a是實數,|a|≥0”是必然事件,故此選項錯誤.故選C.【題目點撥】此題主要考查了概率的意義以及隨機事件的定義,正確把握相關定義是解題關鍵.6、B【解題分析】

連接CD,求出CD⊥AB,根據勾股定理求出AC,在Rt△ADC中,根據銳角三角函數定義求出即可.【題目詳解】解:連接CD(如圖所示),設小正方形的邊長為,∵BD=CD==,∠DBC=∠DCB=45°,∴,在中,,,則.故選B.【題目點撥】本題考查了勾股定理,銳角三角形函數的定義,等腰三角形的性質,直角三角形的判定的應用,關鍵是構造直角三角形.7、D【解題分析】根據“左加右減、上加下減”的原則,將拋物線向左平移1個單位所得直線解析式為:;再向下平移3個單位為:.故選D.8、C【解題分析】

如圖所示,∵(a+b)2=21∴a2+2ab+b2=21,∵大正方形的面積為13,2ab=21﹣13=8,∴小正方形的面積為13﹣8=1.故選C.考點:勾股定理的證明.9、D【解題分析】

5出現了6次,出現的次數最多,則眾數是5;把這些數從小到大排列,中位數是第10,11個數的平均數,則中位數是(6+6)÷2=6;平均數是:(4×2+5×6+6×5+7×4+8×3)÷20=6;故答案選D.10、C【解題分析】△AMN的面積=AP×MN,通過題干已知條件,用x分別表示出AP、MN,根據所得的函數,利用其圖象,可分兩種情況解答:(1)0<x≤1;(2)1<x<2;解:(1)當0<x≤1時,如圖,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函數圖象開口向上;(2)當1<x<2,如圖,同理證得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函數圖象開口向下;綜上答案C的圖象大致符合.故選C.本題考查了二次函數的圖象,考查了學生從圖象中讀取信息的數形結合能力,體現了分類討論的思想.二、填空題(共7小題,每小題3分,滿分21分)11、【解題分析】

作出D關于AB的對稱點D’,則PC+PD的最小值就是CD’的長度,在△COD'中根據邊角關系即可求解.【題目詳解】解:如圖:作出D關于AB的對稱點D’,連接OC,OD',CD'.又∵點C在⊙O上,∠CAB=30°,D為弧BC的中點,即,∴∠BAD'=∠CAB=15°.∴∠CAD'=45°.∴∠COD'=90°.則△COD'是等腰直角三角形.∵OC=OD'=AB=1,故答案為:.【題目點撥】本題考查了軸對稱-最短路線問題,勾股定理,垂徑定理,正確作出輔助線是解題的關鍵.12、【解題分析】先把帶分數化成假分數可得:,然后根據倒數的概念可得:的倒數是,故答案為:.13、【解題分析】

直接根據平方根的定義求解即可(需注意一個正數有兩個平方根).【題目詳解】解:2的平方根是故答案為.【題目點撥】本題考查了平方根的定義.注意一個正數有兩個平方根,它們互為相反數;0的平方根是0;負數沒有平方根.14、1【解題分析】

兩個單項式合并成一個單項式,說明這兩個單項式為同類項.【題目詳解】解:由同類項的定義可知,a=2,b=1,∴a+b=1.故答案為:1.【題目點撥】本題考查的知識點為:同類項中相同字母的指數是相同的.15、4【解題分析】∵AE=12ED,AE+ED=AD,∴ED=2∵四邊形ABCD是平行四邊形,∴AD=BC,AD//BC,∴△DEF∽△BCF,∴DF:BF=DE:BC=2:3,∵DF+BF=BD=10,∴DF=4,故答案為4.16、2n+1【解題分析】觀察擺放的一系列圖形,可得到依次的周長分別是3,4,5,6,7,…,從中得到規律,根據規律寫出第n個圖形的周長.解:由已知一系列圖形觀察圖形依次的周長分別是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n個圖形的周長為:2+n.故答案為2+n.此題考查的是圖形數字的變化類問題,關鍵是通過觀察分析得出規律,根據規律求解.17、1【解題分析】解:根據題意可得x1+x2==5,x1x2==2,∴x1+x2﹣x1x2=5﹣2=1.故答案為:1.點睛:本題主要考查了根據與系數的關系,利用一元二次方程的兩個根x1、x2具有這樣的關系:x1+x2=,x1x2=是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)圓的半徑為4.5;(2)EF=.【解題分析】

(1)連接OD,根據垂徑定理得:DH=2,設圓O的半徑為r,根據勾股定理列方程可得結論;(2)過O作OG⊥AE于G,證明△AGO∽△AHF,列比例式可得AF的長,從而得EF的長.【題目詳解】(1)連接OD,∵直徑AB⊥弦CD,CD=4,∴DH=CH=CD=2,在Rt△ODH中,AH=5,設圓O的半徑為r,根據勾股定理得:OD2=(AH﹣OA)2+DH2,即r2=(5﹣r)2+20,解得:r=4.5,則圓的半徑為4.5;(2)過O作OG⊥AE于G,∴AG=AE=×6=3,∵∠A=∠A,∠AGO=∠AHF,∴△AGO∽△AHF,∴,∴,∴AF=,∴EF=AF﹣AE=﹣6=.【題目點撥】本題考查了垂徑定理,勾股定理,相似三角形的判定與性質,解答本題的關鍵是正確添加輔助線并熟練掌握垂徑定理和相似三角形的判定與性質.19、(1)x=;(2)x>3;數軸見解析;【解題分析】

(1)先把分式方程轉化成整式方程,求出方程的解,再進行檢驗即可;(2)先求出每個不等式的解集,再求出不等式組的解集即可.【題目詳解】解:(1)方程兩邊都乘以(1﹣2x)(x+2)得:x+2﹣(1﹣2x)=0,解得:檢驗:當時,(1﹣2x)(x+2)≠0,所以是原方程的解,所以原方程的解是;(2),∵解不等式①得:x>1,解不等式②得:x>3,∴不等式組的解集為x>3,在數軸上表示為:.【題目點撥】本題考查了解分式方程和解一元一次不等式組、在數軸上表示不等式組的解集等知識點,能把分式方程轉化成整式方程是解(1)的關鍵,能根據不等式的解集得出不等式組的解集是解(2)的關鍵.20、為;點Q的坐標為或.【解題分析】

依據拋物線的對稱軸方程可求得b的值,然后將點B的坐標代入線可求得c的值,即可求得拋物線的表達式;由平移后拋物線的頂點在x軸上可求得平移的方向和距離,故此,然后由點,軸可得到點Q和P關于x對稱,可求得點Q的縱坐標,將點Q的縱坐標代入平移后的解析式可求得對應的x的值,則可得到點Q的坐標.【題目詳解】拋物線頂點A的橫坐標是,,即,解得..將代入得:,拋物線的解析式為.拋物線向下平移了4個單位.平移后拋物線的解析式為,.,點O在PQ的垂直平分線上.又軸,點Q與點P關于x軸對稱.點Q的縱坐標為.將代入得:,解得:或.點Q的坐標為或.【題目點撥】本題主要考查的是二次函數的綜合應用,解答本題主要應用了待定系數法求二次函數的解析式、二次函數的平移規律、線段垂直平分線的性質,發現點Q與點P關于x軸對稱,從而得到點Q的縱坐標是解題的關鍵.21、(1)平均數為800升,中位數為800升;(2)12.5%;(3)小申家沖廁所的用水量較大,可以將洗衣服的水留到沖廁所,采用以上建議,一個月估計可以節約用水3000升.【解題分析】試題分析:(1)根據平均數和中位數的定義求解可得;(2)用洗衣服的水量除以第3天的用水總量即可得;(3)根據條形圖給出合理建議均可,如:將洗衣服的水留到沖廁所.試題解析:解:(1)這7天內小申家每天用水量的平均數為(815+780+800+785+790+825+805)÷7=800(升),將這7天的用水量從小到大重新排列為:780、785、790、800、805、815、825,∴用水量的中位數為800升;(2)×100%=12.5%.答:第3天小申家洗衣服的水占這一天總用水量的百分比為12.5%;(3)小申家沖廁所的用水量較大,可以將洗衣服的水留到沖廁所,采用以上建議,每天可節約用水100升,一個月估計可以節約用水100×30=3000升.22、(1)60,1°.(2)補圖見解析;(3)【解題分析】

(1)根據了解很少的人數和所占的百分百求出抽查的總人數,再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應扇形的圓心角的度數;(2)用調查的總人數減去“基本了解”“了解很少”和“基本了解”的人數,求出了解的人數,從而補全統計圖;(3)根據題意先畫出樹狀圖,再根據概率公式即可得出答案.【題目詳解】(1)接受問卷調查的學生共有30÷50%=60(人),扇形統計圖中“基本了解”部分所對應扇形的圓心角為360°×=1°,故答案為60,1.(2)了解的人數有:60﹣15﹣30﹣10

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論