




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆云南省文山市數學高一上期末監測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1.若向量=,||=2,若·(-)=2,則向量與的夾角()A. B.C. D.2.設f(x)為定義在R上的奇函數,當x>0時,f(x)=log3(1+x),則f(﹣2)=()A.﹣3 B.﹣1C.1 D.33.下列函數,其中既是偶函數又在區間上單調遞減的函數為A. B.C. D.4.已知均為上連續不斷的曲線,根據下表能判斷方程有實數解的區間是()x01233.0115.4325.9807.6513.4514.8905.2416.892A. B.C. D.5.下列函數中,既是奇函數又存在零點的函數是()A. B.C. D.6.已知函數(其中)的最小正周期為,則()A. B.C.1 D.7.對于兩條平行直線和圓的位置關系定義如下:若兩直線中至少有一條與圓相切,則稱該位置關系為“平行相切”;若兩直線都與圓相離,則稱該位置關系為“平行相離”;否則稱為“平行相交”.已知直線,與圓的位置關系是“平行相交”,則實數的取值范圍為A. B.C. D.8.已知函數的值域是()A. B.C. D.9.定義在上的函數,,若在區間上為增函數,則一定為正數的是A. B.C. D.10.函數零點所在的大致區間的A. B.C. D.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11.在直角坐標系內,已知是圓上一點,折疊該圓兩次使點分別與圓上不相同的兩點(異于點)重合,兩次的折痕方程分別為和,若圓上存在點,使,其中的坐標分別為,則實數的取值集合為__________12.設函數的圖象為,則下列結論中正確的是__________(寫出所有正確結論的編號).①圖象關于直線對稱;②圖象關于點對稱;③函數在區間內是增函數;④把函數的圖象上點的橫坐標縮短為原來的一半(縱坐標不變)可以得到圖象.13.已知冪函數的圖象過點,則此函數的解析式為______14.—個幾何體的三視圖如圖所示,則該幾何體的體積為__________15.已知,則函數的最大值為___________,最小值為___________.三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16.人口問題是世界普遍關注的問題,通過對若干個大城市的統計分析,針對人口密度分布進行模擬研究,發現人口密度與到城市中心的距離之間呈現負指數關系.指數模型是經典的城市人口密度空間分布的模型之一,該模型的計算是基于圈層距離法獲取距城市中心距離和人口密度數據的,具體而言就是以某市中心位置為圓心,以不同的距離為半徑劃分圈層,測量和分析不同圈層中的人口狀況.其中x是圈層序號,將圈層序號是x的區域稱為“x環”(時,1環表示距離城市中心0~3公里的圈層;時,2環表示距離城市中心3~6公里的圈層;以此類推);是城市中心的人口密度(單位:萬人/平方公里),為x環的人口密度(單位:萬人/平方公里);b為常數;.下表為某市2006年和2016年人口分布的相關數據:年份b20062.20.1320162.30.10(1)求該市2006年2環處的人口密度(參考數據:,結果保留一位小數);(2)2016年該市某環處的人口密度為市中心人口密度的,求該環是這個城市的多少環.(參考數據:)17.已知函數,,且.(1)求實數m的值,并求函數有3個不同的零點時實數b的取值范圍;(2)若函數在區間上為增函數,求實數a的取值范圍.18.已知集合,集合,集合.(1)求;(2)若,求實數a的取值范圍.19.已知函數f(x)=a-.(1)若2f(1)=f(2),求a的值;(2)判斷f(x)在(-∞,0)上的單調性并用定義證明.20.義域為的函數滿足:對任意實數x,y均有,且,又當時,.(1)求的值,并證明:當時,;(2)若不等式對任意恒成立,求實數的取值范圍.21.已知,(1)若,求a的值;(2)若函數在內有且只有一個零點,求實數a的取值范圍
參考答案一、選擇題(本大題共10小題;在每小題給出的四個選項中,只有一個選項符合題意,請將正確選項填涂在答題卡上.)1、A【解析】利用向量模的坐標求法可得,再利用向量數量積求夾角即可求解.【詳解】由已知可得:,得,設向量與的夾角為,則所以向量與的夾角為故選:A.【點睛】本題考查了利用向量數量積求夾角、向量模的坐標求法,屬于基礎題.2、B【解析】因為函數f(x)為奇函數,所以.選B3、A【解析】分別考查函數的奇偶性和函數的單調性即可求得最終結果.【詳解】逐一考查所給的函數的性質:A.,函數為偶函數,在區間上單調遞減;B.,函數為非奇非偶函數,在區間上單調遞增;C.,函數為奇函數,在區間上單調遞減;D.,函數為偶函數,在區間上單調遞增;據此可得滿足題意的函數只有A選項.本題選擇A選項.【點睛】本題主要考查函數的單調性,函數的奇偶性等知識,意在考查學生的轉化能力和計算求解能力.4、C【解析】根據函數零點的存在性定理可以求解.【詳解】由表可知,,,令,則均為上連續不斷的曲線,所以在上連續不斷的曲線,所以,,;所以函數有零點的區間為,即方程有實數解的區間是.故選:C.5、A【解析】判斷函數的奇偶性,可排除選項得出正確答案【詳解】因為是偶函數,故B錯誤;是非奇非偶函數,故C錯誤;是非奇非偶函數,故D錯誤;故選:A.6、D【解析】根據正弦型函數的最小正周期求ω,從而可求的值.【詳解】由題可知,,∴.故選:D.7、D【解析】根據定義先求出l1,l2與圓相切,再求出l1,l2與圓外離,結合定義即可得到答案.【詳解】圓C的標準方程為(x+1)2+y2=b2.由兩直線平行,可得a(a+1)-6=0,解得a=2或a=-3.當a=2時,直線l1與l2重合,舍去;當a=-3時,l1:x-y-2=0,l2:x-y+3=0.由l1與圓C相切,得,由l2與圓C相切,得.當l1、l2與圓C都外離時,.所以,當l1、l2與圓C“平行相交”時,b滿足,故實數b的取值范圍是(,)∪(,+∞)故選D.8、B【解析】由于,進而得,即函數的值域是【詳解】解:因為,所以所以函數的值域是故選:B9、A【解析】在區間上為增函數,即故選點睛:本題運用函數的單調性即計算出結果的符號問題,看似本題有點復雜,在解析式的給出時含有復合部分,只要運用函數的解析式求值,然后利用函數的單調性,做出減法運算即可判定出結果10、B【解析】函數是單調遞增函數,則只需時,函數在區間(a,b)上存在零點.【詳解】函數,x>0上單調遞增,,函數f(x)零點所在的大致區間是;故選B【點睛】本題考查利用函數零點存在性定義定理求解函數的零點的范圍,屬于基礎題;解題的關鍵是首先要判斷函數的單調性,再根據零點存在的條件:已知函數在(a,b)連續,若確定零點所在的區間.二、填空題(本大題共5小題,請把答案填在答題卡中相應題中橫線上)11、【解析】由題意,∴A(3,2)是⊙C上一點,折疊該圓兩次使點A分別與圓上不相同的兩點(異于點A)重合,兩次的折痕方程分別為x﹣y+1=0和x+y﹣7=0,∴圓上不相同的兩點為B(1,4),D(5,4),∵A(3,2),BA⊥DA∴BD的中點為圓心C(3,4),半徑為1,∴⊙C的方程為(x﹣3)2+(y﹣4)2=4過P,M,N的圓的方程為x2+y2=m2,∴兩圓外切時,m的最大值為,兩圓內切時,m的最小值為,故答案為[3,7]12、①③【解析】圖象關于直線對稱;所以①對;圖象關于點對稱;所以②錯;,所以函數在區間內是增函數;所以③對;因為把函數的圖象上點的橫坐標縮短為原來的一半(縱坐標不變)可以得到,所以④錯;填①③.13、##【解析】設出冪函數,代入點即可求解.【詳解】由題意,設,代入點得,解得,則.故答案為:.14、30【解析】由三視圖可知這是一個下面是長方體,上面是個平躺著的五棱柱構成的組合體長方體的體積為五棱柱的體積是故該幾何體的體積為點睛:本題主要考查的知識點是由三視圖求面積,體積.本題通過觀察三視圖這是一個下面是長方體,上面是個平躺著的五棱柱構成的組合體,分別求出長方體和五棱柱的體積,然后相加可得答案15、①.②.【解析】利用對勾函數的單調性直接計算函數的最大值和最小值作答.【詳解】因函數在上單調遞增,在上單調遞減,當時,函數在上單調遞增,在上單調遞減,即有當時,,而當時,,當時,,則,所以函數的最大值為,最小值為.故答案為:;三、解答題(本大題共6小題.解答應寫出文字說明,證明過程或演算步驟.)16、(1)1.7(2)4【解析】(2)根據表中數據,由求解;(2)根據2016年該市某環處的人口密度為市中心人口密度的,由求解.【小問1詳解】解:由表中數據得:;【小問2詳解】因為2016年該市某環處的人口密度為市中心人口密度的,所以,即,所以,解得,所以該環是這個城市的4環.17、(1)..(2)【解析】(1)由求得,作出函數圖象可知的范圍;(2)由函數圖象可知區間所屬范圍,列不等式示得結論.【詳解】(1)因為,所以.函數大致圖象如圖所示令,得.故有3個不同的零點.即方程有3個不同的實根.由圖可知.(2)由圖象可知,函數在區間和上分別單調遞增.因為,且函數在區間上為增函數,所以可得,解得.所以實數a的取值范圍為.【點睛】本題考查由函數值求參數,考查分段函數的圖象與性質.考查零點個數問題與轉化思想.屬于中檔題.18、(1)(2)【解析】(1)先化簡集合A,B,再利用交集運算求解;(2)根據,化簡集合,再根據求解.【小問1詳解】解:∵,∴,∴集合.∵,∴,∴集合.∴.【小問2詳解】∵,∴.∵,∴,解得.∴實數a的取值范圍是.19、(1)3(2)f(x)在(-∞,0)上是單調遞增的,證明見解析【解析】(1)由已知列方程求解;(2)由復合函數單調性判斷,根據單調性定義證明;【小問1詳解】∵2f(1)=f(2),∴2(a-2)=a-1,∴a=3.【小問2詳解】f(x)在(-∞,0)上是單調遞增的,證明如下:設x1,x2∈(-∞,0),且x1<x2,則f(x1)-f(x2)=(a-)-(a-)=-=,∵x1,x2∈(-∞,0),∴x1x2>0.又x1<x2,∴x1-x2<0,∴f(x1)-f(x2)<0,即f(x1)<f(x2),∴f(x)=a-在(-∞,0)上是單調遞增的.20、(1)答案見解析;(2)或.【解析】(1)利用賦值法計算可得,設,則,利用拆項:即可證得:當時,;(2)結合(1)的結論可證得是增函數,據此脫去f符號,原問題轉化為在上恒成立,分離參數有:恒成立,結合基本不等式的結論可得實數的取值范圍是或.試題解析:(1)令,得,令,得,令,得,設,則,因為,所以;(2)設,
,
因為所以,所以為增函數,所以,
即,上式等價于對任意恒成立,因為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 冬季安全預防疾病
- 傳染性疾病的預防和隔離
- 鯉魚燈美術課件
- 營養性巨幼細胞貧血護理
- 美食海報高級排版設計要點
- 循環經濟產業園規劃設計
- 2025年幼兒園寒假安全教育
- 腎內科病人用藥護理
- 學校住宿安全課件
- 2025年長租公寓市場運營模式創新與盈利結構分析報告
- 無菌藥品(附檢查指南)
- 眾辰變頻器說明書3400
- 山東大學《概率論與數理統計》期末試題及答案
- GB∕T 33917-2017 精油 手性毛細管柱氣相色譜分析 通用法
- 高壓氧治療操作規程以及護理常規
- 新能源汽車的研究論文
- 材料科學基礎基礎知識點總結
- 數控銑工圖紙(60份)(共60頁)
- 惠州市出租車駕駛員從業資格區域科目考試題庫(含答案)
- 加工設備工時單價表
- 高脂血癥藥物治療ppt課件
評論
0/150
提交評論