




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
第04講1.3空間向量及其運(yùn)算的坐標(biāo)表示課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①理解和掌握空間向量的坐標(biāo)表示及意義②會(huì)用向量的坐標(biāo)表達(dá)空間向量的相關(guān)運(yùn)算③會(huì)求空間向量的夾角、長度以及有關(guān)平行、垂直的證明利用空間向量的坐標(biāo)表示,將形與數(shù)有機(jī)結(jié)合,并能進(jìn)行相關(guān)的計(jì)算與證明是學(xué)習(xí)空間向量及運(yùn)算的關(guān)鍵.也是解決空間幾何的重要手段與工具.知識(shí)點(diǎn)01:空間向量的正交分解及其坐標(biāo)表示1、空間直角坐標(biāo)系空間直角坐標(biāo)系及相關(guān)概念(1)空間直角坐標(biāo)系:在空間選定一點(diǎn)SKIPIF1<0和一個(gè)單位正交基底SKIPIF1<0,以SKIPIF1<0為原點(diǎn),分別以SKIPIF1<0的方向?yàn)檎较颍运鼈兊拈L為單位長度建立三條數(shù)軸:SKIPIF1<0軸、SKIPIF1<0軸、SKIPIF1<0軸,它們都叫做坐標(biāo)軸,這時(shí)我們就建立了一個(gè)空間直角坐標(biāo)系SKIPIF1<0.(2)相關(guān)概念:SKIPIF1<0叫做原點(diǎn),SKIPIF1<0都叫做坐標(biāo)向量,通過每兩個(gè)坐標(biāo)軸的平面叫做坐標(biāo)平面,分別稱為SKIPIF1<0平面、SKIPIF1<0平面、SKIPIF1<0平面,它們把空間分成八個(gè)部分.2、空間向量的坐標(biāo)表示2.1空間一點(diǎn)的坐標(biāo):在空間直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0為坐標(biāo)向量,對(duì)空間任意一點(diǎn)SKIPIF1<0,對(duì)應(yīng)一個(gè)向量SKIPIF1<0,且點(diǎn)SKIPIF1<0的位置由向量SKIPIF1<0唯一確定,由空間向量基本定理,存在唯一的有序?qū)崝?shù)組SKIPIF1<0,使SKIPIF1<0.在單位正交基底SKIPIF1<0下與向量SKIPIF1<0對(duì)應(yīng)的有序?qū)崝?shù)組SKIPIF1<0叫做點(diǎn)SKIPIF1<0在此空間直角坐標(biāo)系中的坐標(biāo),記作SKIPIF1<0,其中SKIPIF1<0叫做點(diǎn)SKIPIF1<0的橫坐標(biāo),SKIPIF1<0叫做點(diǎn)SKIPIF1<0的縱坐標(biāo),SKIPIF1<0叫做點(diǎn)SKIPIF1<0的豎坐標(biāo).2.2空間向量的坐標(biāo):在空間直角坐標(biāo)系SKIPIF1<0中,給定向量SKIPIF1<0,作SKIPIF1<0.由空間向量基本定理,存在唯一的有序?qū)崝?shù)組SKIPIF1<0,使SKIPIF1<0.有序?qū)崝?shù)組SKIPIF1<0叫做SKIPIF1<0在空間直角坐標(biāo)系SKIPIF1<0中的坐標(biāo),上式可簡記作SKIPIF1<0.【即學(xué)即練1】(2023春·高二課時(shí)練習(xí))已知SKIPIF1<0是空間的一個(gè)單位正交基底,向量SKIPIF1<0用坐標(biāo)形式可表示為________.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0是空間的一個(gè)單位正交基底,則有SKIPIF1<0.所以向量SKIPIF1<0用坐標(biāo)形式表示為SKIPIF1<0.故答案為:SKIPIF1<0知識(shí)點(diǎn)02:空間向量運(yùn)算的坐標(biāo)表示設(shè)SKIPIF1<0,空間向量的坐標(biāo)運(yùn)算法則如下表所示:運(yùn)算坐標(biāo)表示加法SKIPIF1<0減法SKIPIF1<0數(shù)乘SKIPIF1<0數(shù)量積SKIPIF1<0知識(shí)點(diǎn)03:空間向量平行與垂直的條件,幾何計(jì)算的坐標(biāo)表示1、兩個(gè)向量的平行與垂直SKIPIF1<0平行(SKIPIF1<0)SKIPIF1<0SKIPIF1<0垂直(SKIPIF1<0)SKIPIF1<0SKIPIF1<0(SKIPIF1<0均非零向量)特別提醒:在SKIPIF1<0SKIPIF1<0中,應(yīng)特別注意,只有在SKIPIF1<0與三個(gè)坐標(biāo)平面都不平行時(shí),才能寫成SKIPIF1<0.例如,若SKIPIF1<0與坐標(biāo)平面SKIPIF1<0平行,則SKIPIF1<0,這樣SKIPIF1<0就沒有意義了.【即學(xué)即練2】(2023春·四川成都·高二四川省成都列五中學(xué)校考階段練習(xí))已知兩個(gè)空間向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的值為__________.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<02、向量長度的坐標(biāo)計(jì)算公式若SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0空間向量長度公式表示的是向量的長度,其形式與平面向量長度公式一致,它的幾何意義是表示長方體的體對(duì)角線的長度3、兩個(gè)向量夾角的坐標(biāo)計(jì)算公式設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0【即學(xué)即練3】(2023春·高二課時(shí)練習(xí))已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求x,y,z的值;(2)求向量SKIPIF1<0與SKIPIF1<0所成角的余弦值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,設(shè)存在實(shí)數(shù)SKIPIF1<0,使得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0.因?yàn)镾KIPIF1<0,SKIPIF1<0,則SKIPIF1<0.∴所以SKIPIF1<0.(2)由(1)知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∴向量SKIPIF1<0與SKIPIF1<0所成角的余弦值為SKIPIF1<0.4、兩點(diǎn)間的距離公式已知SKIPIF1<0,則SKIPIF1<0題型01空間向量的坐標(biāo)表示【典例1】(2023秋·北京豐臺(tái)·高二北京市第十二中學(xué)??计谀┰诳臻g直角坐標(biāo)系中,已知三點(diǎn)SKIPIF1<0,若點(diǎn)SKIPIF1<0在平面SKIPIF1<0內(nèi),則點(diǎn)SKIPIF1<0的坐標(biāo)可能是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由SKIPIF1<0,SKIPIF1<0,顯然SKIPIF1<0,SKIPIF1<0不共線,根據(jù)向量基本定理可得SKIPIF1<0,故C點(diǎn)坐標(biāo)為SKIPIF1<0,經(jīng)驗(yàn)算只有B選項(xiàng)符合條件,此時(shí)SKIPIF1<0,故選:B【典例2】(多選)(2023·全國·高二專題練習(xí))如圖,在正三棱柱SKIPIF1<0中,已知SKIPIF1<0的邊長為2,三棱柱的高為SKIPIF1<0的中點(diǎn)分別為SKIPIF1<0,以SKIPIF1<0為原點(diǎn),分別以SKIPIF1<0的方向?yàn)镾KIPIF1<0軸?SKIPIF1<0軸?SKIPIF1<0軸的正方向建立空間直角坐標(biāo)系,則下列空間點(diǎn)及向量坐標(biāo)表示正確的是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】ABC【詳解】在等邊SKIPIF1<0中,SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.故選:ABC【典例3】(2023春·內(nèi)蒙古呼倫貝爾·高二校考開學(xué)考試)已知點(diǎn)SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0滿足SKIPIF1<0,則點(diǎn)SKIPIF1<0的坐標(biāo)是________.【答案】SKIPIF1<0【詳解】設(shè)SKIPIF1<0,SKIPIF1<0為坐標(biāo)原點(diǎn).由點(diǎn)SKIPIF1<0滿足SKIPIF1<0,得SKIPIF1<0,可得SKIPIF1<0,則點(diǎn)SKIPIF1<0的坐標(biāo)是SKIPIF1<0.故答案為:SKIPIF1<0.【變式1】(2023秋·高二課時(shí)練習(xí))如圖,在空間直角坐標(biāo)系中,正方體SKIPIF1<0的棱長為1,SKIPIF1<0,則SKIPIF1<0等于A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】由題,在空間直角坐標(biāo)系中,正方體SKIPIF1<0的棱長為1,SKIPIF1<0則SKIPIF1<0SKIPIF1<0故選C.【變式2】(2023春·高二課時(shí)練習(xí))若SKIPIF1<0?SKIPIF1<0,點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,且SKIPIF1<0,則點(diǎn)SKIPIF1<0的坐標(biāo)是___________.【答案】SKIPIF1<0【詳解】解:SKIPIF1<0點(diǎn)SKIPIF1<0?SKIPIF1<0,SKIPIF1<0為線段SKIPIF1<0上一點(diǎn),且SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0;故答案為:SKIPIF1<0.題型02空間向量的坐標(biāo)運(yùn)算【典例1】(2023春·高二課時(shí)練習(xí))已知向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,求:(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【答案】(1)SKIPIF1<0(2)2(3)4【詳解】(1)由SKIPIF1<0,SKIPIF1<0得SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【典例2】(2023春·高二課時(shí)練習(xí))如圖,在長方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,以SKIPIF1<0為單位正交基底,建立如圖所示的空間直角坐標(biāo)系SKIPIF1<0.(1)寫出SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四點(diǎn)的坐標(biāo);(2)寫出向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的坐標(biāo).【答案】(1)點(diǎn)SKIPIF1<0SKIPIF1<0,點(diǎn)SKIPIF1<0SKIPIF1<0,點(diǎn)CSKIPIF1<0,SKIPIF1<0SKIPIF1<0(2)SKIPIF1<0;SKIPIF1<0;SKIPIF1<0;SKIPIF1<0.【詳解】(1)點(diǎn)SKIPIF1<0在z軸上,且SKIPIF1<0,所以點(diǎn)SKIPIF1<0的坐標(biāo)是SKIPIF1<0.同理,點(diǎn)C的坐標(biāo)是SKIPIF1<0.點(diǎn)SKIPIF1<0在x軸、y軸、z軸上的射影分別為A,O,SKIPIF1<0,它們?cè)谧鴺?biāo)軸上的坐標(biāo)分別為3,0,2,所以點(diǎn)SKIPIF1<0的坐標(biāo)是SKIPIF1<0.點(diǎn)SKIPIF1<0在x軸、y軸、z軸上的射影分別為A,C,SKIPIF1<0,它們?cè)谧鴺?biāo)軸上的坐標(biāo)分別為3,4,2,所以點(diǎn)SKIPIF1<0的坐標(biāo)是SKIPIF1<0.(2)SKIPIF1<0;SKIPIF1<0;SKIPIF1<0;SKIPIF1<0.【變式1】(2023春·福建寧德·高二校聯(lián)考期中)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三向量共面,則實(shí)數(shù)SKIPIF1<0等于(
)A.4 B.5 C.6 D.7【答案】D【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0三向量共面,設(shè)SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故選:D【變式2】(2023秋·高二課時(shí)練習(xí))已知點(diǎn)SKIPIF1<0、SKIPIF1<0,且滿足SKIPIF1<0,則SKIPIF1<0點(diǎn)的坐標(biāo)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】設(shè)點(diǎn)SKIPIF1<0,由SKIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0,解得SKIPIF1<0,故點(diǎn)SKIPIF1<0.故選:B.題型03空間向量數(shù)量積(坐標(biāo)形式求空間向量的數(shù)量積)【典例1】(2023秋·北京豐臺(tái)·高二北京市第十二中學(xué)??计谀┤粝蛄縎KIPIF1<0,滿足條件SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.1 D.2【答案】B【詳解】根據(jù)向量的運(yùn)算可得:SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0,故選:B【典例2】(2023春·高二課時(shí)練習(xí))已知向量SKIPIF1<0,SKIPIF1<0.求SKIPIF1<0.【答案】SKIPIF1<0【詳解】由向量SKIPIF1<0,SKIPIF1<0,可得SKIPIF1<0.【變式1】(2023秋·廣東深圳·高二統(tǒng)考期末)已知向量SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由題意知,SKIPIF1<0由SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0.故選:B.【變式2】(2023秋·天津·高二統(tǒng)考期末)已知空間向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】SKIPIF1<0,SKIPIF1<0,故選:A題型04空間向量數(shù)量積(坐標(biāo)形式求空間向量數(shù)量積的最值范圍問題)【典例1】(2023秋·湖北·高三校聯(lián)考階段練習(xí))在長方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是棱SKIPIF1<0,SKIPIF1<0,SKIPIF1<0上的點(diǎn),且SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是平面SKIPIF1<0內(nèi)一動(dòng)點(diǎn),若直線SKIPIF1<0與平面SKIPIF1<0平行,則SKIPIF1<0的最小值為(
)A.SKIPIF1<0 B.17 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】以D作坐標(biāo)原點(diǎn),DA,DC,SKIPIF1<0所在直線分別為x軸,y軸,z軸,建立空間直角坐標(biāo)系,則SKIPIF1<0,設(shè)平面MPN的法向量為SKIPIF1<0,則SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,因?yàn)橹本€SKIPIF1<0與平面SKIPIF1<0平行,所以SKIPIF1<0,SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值,最小值為SKIPIF1<0.故選:A【典例2】(2023春·山東煙臺(tái)·高二山東省煙臺(tái)第一中學(xué)??奸_學(xué)考試)正四面體SKIPIF1<0的棱長為2,動(dòng)點(diǎn)SKIPIF1<0在以SKIPIF1<0為直徑的球面上,則SKIPIF1<0的最大值為(
)A.2 B.SKIPIF1<0 C.4 D.SKIPIF1<0【答案】C【詳解】設(shè)SKIPIF1<0的中點(diǎn)為SKIPIF1<0,以SKIPIF1<0為原點(diǎn)建立如圖所示的空間坐標(biāo)系,則SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在以SKIPIF1<0為球心,以SKIPIF1<0為半徑的球面上,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,則直線SKIPIF1<0與單位圓SKIPIF1<0相切時(shí),截距取得最小值,令SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0SKIPIF1<0SKIPIF1<0的最大值為SKIPIF1<0.故選:C【典例3】(2023·江蘇·高二專題練習(xí))在空間直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在直線SKIPIF1<0上運(yùn)動(dòng),則當(dāng)SKIPIF1<0取得最小值時(shí),SKIPIF1<0______.【答案】SKIPIF1<0/SKIPIF1<0【詳解】解:因?yàn)辄c(diǎn)SKIPIF1<0在直線SKIPIF1<0上運(yùn)動(dòng),SKIPIF1<0,所以設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值,此時(shí)SKIPIF1<0,所以SKIPIF1<0故答案為:SKIPIF1<0【變式1】(2023秋·河南鄭州·高二鄭州市第九中學(xué)??茧A段練習(xí))已知空間直角坐標(biāo)系SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0在直線SKIPIF1<0上運(yùn)動(dòng),則當(dāng)SKIPIF1<0取得最小值時(shí),點(diǎn)SKIPIF1<0的坐標(biāo)為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】設(shè)SKIPIF1<0,由點(diǎn)SKIPIF1<0在直線SKIPIF1<0上,可得存在實(shí)數(shù)SKIPIF1<0使得SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,根據(jù)二次函數(shù)的性質(zhì),可得當(dāng)SKIPIF1<0時(shí),取得最小值SKIPIF1<0,此時(shí)SKIPIF1<0.故選:C.【變式2】(2023秋·上海徐匯·高二南洋中學(xué)??计谀┮阎猄KIPIF1<0是長方體外接球的一條直徑,點(diǎn)P在長方體表面上運(yùn)動(dòng),長方體的棱長分別為1、1、SKIPIF1<0,則SKIPIF1<0的取值范圍為________.【答案】SKIPIF1<0【詳解】因?yàn)镸N是長方體外接球的一條直徑,長方體的棱長分別為1、1、SKIPIF1<0所以SKIPIF1<0,如圖,設(shè)SKIPIF1<0,則SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0因?yàn)镾KIPIF1<0當(dāng)SKIPIF1<0時(shí)取等號(hào),此時(shí)點(diǎn)P在ABCD平面內(nèi),又SKIPIF1<0當(dāng)SKIPIF1<0時(shí)取等號(hào),此時(shí)點(diǎn)P在ABCD平面內(nèi).即所求的范圍是SKIPIF1<0.故答案為:SKIPIF1<0題型05空間向量的模(坐標(biāo)形式求空間向量的模(距離,長度))【典例1】(2023春·江蘇南京·高二南京市第五高級(jí)中學(xué)校考期中)已知向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,那么SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.5【答案】C【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,且SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,故選:C.【典例2】(2023春·高二課時(shí)練習(xí))如圖,在棱長為1的正方體SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0分別為SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0在棱SKIPIF1<0上,且SKIPIF1<0,H為SKIPIF1<0的中點(diǎn).求|SKIPIF1<0|.【答案】SKIPIF1<0【詳解】如圖,建立空間直角坐標(biāo)系D-xyz,D為坐標(biāo)原點(diǎn),則有SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.【典例3】(2023秋·山東日照·高二統(tǒng)考期末)已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0_____.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0所以SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0【變式1】(2023秋·上海長寧·高二上海市延安中學(xué)??计谀┮阎猄KIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0為______.【答案】SKIPIF1<0【詳解】SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0又SKIPIF1<0SKIPIF1<0故答案為:SKIPIF1<0題型06空間向量的模(根據(jù)空間向量的模求參數(shù))【典例1】(2023·全國·高二專題練習(xí))已知向量SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0____________.【答案】3【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0,因?yàn)镾KIPIF1<0,解得SKIPIF1<0,故答案為3.題型07空間向量的模(坐標(biāo)形式求空間向量模的最值(范圍)問題)【典例1】(2022·高二課時(shí)練習(xí))已知正方體SKIPIF1<0的棱長為4,點(diǎn)SKIPIF1<0是棱SKIPIF1<0的中點(diǎn),動(dòng)點(diǎn)SKIPIF1<0在正方形SKIPIF1<0內(nèi)(包括邊界)運(yùn)動(dòng),且SKIPIF1<0平面SKIPIF1<0,則SKIPIF1<0長度的取值范圍為(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】以D為原點(diǎn),以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的方向?yàn)閤,y,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系SKIPIF1<0.則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.取SKIPIF1<0的中點(diǎn)為H,連接SKIPIF1<0,SKIPIF1<0.在正方體SKIPIF1<0中,SKIPIF1<0且SKIPIF1<0,所以四邊形SKIPIF1<0為平行四邊形,所以SKIPIF1<0.又SKIPIF1<0面SKIPIF1<0,SKIPIF1<0面SKIPIF1<0,所以SKIPIF1<0面SKIPIF1<0.同理可證:SKIPIF1<0面SKIPIF1<0.又SKIPIF1<0,所以平面SKIPIF1<0平面SKIPIF1<0.因?yàn)镾KIPIF1<0平面SKIPIF1<0,所以點(diǎn)P只能在線段SKIPIF1<0上運(yùn)動(dòng).易知SKIPIF1<0,設(shè)SKIPIF1<0(SKIPIF1<0),SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值36.故PC長度的取值范圍為SKIPIF1<0.故選:C【典例2】(2023·高二課時(shí)練習(xí))如圖,在直三棱柱SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0為SKIPIF1<0的中點(diǎn),點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,點(diǎn)SKIPIF1<0在線段SKIPIF1<0上,求線段SKIPIF1<0長的最小值.【答案】SKIPIF1<0【詳解】依題意,SKIPIF1<0、SKIPIF1<0、SKIPIF1<0兩兩垂直,建立如圖所示的空間直角坐標(biāo)系,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0.若線段EF的長最小,則必滿足SKIPIF1<0,則SKIPIF1<0SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,因此,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,所以線段EF長的最小值為SKIPIF1<0.【典例3】(2023·全國·高三專題練習(xí))已知單位空間向量SKIPIF1<0滿足SKIPIF1<0.若空間向量SKIPIF1<0滿足SKIPIF1<0,且對(duì)于任意實(shí)數(shù)SKIPIF1<0的最小值是2,則SKIPIF1<0的最小值是_________.【答案】SKIPIF1<0【詳解】以SKIPIF1<0,SKIPIF1<0方向?yàn)镾KIPIF1<0軸,垂直于SKIPIF1<0,SKIPIF1<0方向?yàn)镾KIPIF1<0軸建立空間直角坐標(biāo)系,則SKIPIF1<0,由SKIPIF1<0可設(shè)SKIPIF1<0,由SKIPIF1<0是單位空間向量可得SKIPIF1<0,由SKIPIF1<0可設(shè)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0,SKIPIF1<0的最小值是2,所以SKIPIF1<0,取SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【變式1】(2023春·上海寶山·高二統(tǒng)考期末)已知SKIPIF1<0、SKIPIF1<0是空間互相垂直的單位向量,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值是______.【答案】4【詳解】SKIPIF1<0SKIPIF1<0是空間相互垂直的單位向量,SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)取得等號(hào),SKIPIF1<0SKIPIF1<0的最小值是4.故答案為:4.【變式2】(2023·上?!じ呷龑n}練習(xí))已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是空間兩兩垂直的單位向量,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的最小值為________.【答案】SKIPIF1<0【詳解】由題意可設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0(當(dāng)且僅當(dāng)SKIPIF1<0,SKIPIF1<0時(shí)等號(hào)成立),所以SKIPIF1<0的最小值為SKIPIF1<0.故答案為:SKIPIF1<0.【變式3】(2023·江蘇·高二專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的最小值為__________.【答案】SKIPIF1<0/SKIPIF1<0【詳解】解:SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí)等號(hào)成立,即SKIPIF1<0的最小值為SKIPIF1<0故答案為:SKIPIF1<0.題型08空間向量的夾角問題(坐標(biāo)形式)【典例1】(2023秋·山東臨沂·高二??计谀┮阎臻g向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則向量SKIPIF1<0與SKIPIF1<0的夾角為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】SKIPIF1<0,解得SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,設(shè)向量SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0.故選:A.【典例2】(2023春·江蘇·高二南師大二附中校聯(lián)考階段練習(xí))若向量SKIPIF1<0,且SKIPIF1<0與SKIPIF1<0夾角的余弦值為SKIPIF1<0,則SKIPIF1<0等于(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.2【答案】A【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0與SKIPIF1<0夾角的余弦值為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,注意到SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故選:A.【典例3】(2023秋·高二課時(shí)練習(xí))已知空間三點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0與SKIPIF1<0的夾角SKIPIF1<0的大小是________.【答案】120°【詳解】由題意,空間三點(diǎn)A(1,1,1),B(-1,0,4),C(2,-2,3),則SKIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0【典例4】(2023秋·河南周口·高二統(tǒng)考期末)已知向量SKIPIF1<0(1)求SKIPIF1<0;(2)求向量SKIPIF1<0與SKIPIF1<0夾角的余弦值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)因?yàn)镾KIPIF1<0,所以SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,所以SKIPIF1<0,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0故SKIPIF1<0與SKIPIF1<0夾角的余弦值為SKIPIF1<0.【變式1】(2023·江蘇淮安·江蘇省盱眙中學(xué)??寄M預(yù)測)若向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0的夾角的余弦值為SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0等于(
).A.0 B.SKIPIF1<0 C.0或SKIPIF1<0 D.0或SKIPIF1<0【答案】C【詳解】由題意得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,故選:C.【變式2】(2023春·甘肅白銀·高二??茧A段練習(xí))在空間直角坐標(biāo)系中,已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0、SKIPIF1<0夾角的余弦值是______.【答案】SKIPIF1<0/SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,由空間向量的夾角公式可得,SKIPIF1<0,所以SKIPIF1<0、SKIPIF1<0夾角的余弦值是SKIPIF1<0,故答案為:SKIPIF1<0.【變式3】(2023秋·吉林遼源·高二校聯(lián)考期末)已知向量SKIPIF1<0,SKIPIF1<0.(1)求SKIPIF1<0的值;(2)求向量SKIPIF1<0與SKIPIF1<0夾角的余弦值.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.【詳解】(1)∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0;(2)設(shè)SKIPIF1<0與SKIPIF1<0的夾角為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴向量SKIPIF1<0與SKIPIF1<0夾角的余弦值為SKIPIF1<0.題型09空間向量的投影向量(坐標(biāo)形式)【典例1】(2023春·江蘇宿遷·高二統(tǒng)考期中)已知向量SKIPIF1<0,SKIPIF1<0,則向量SKIPIF1<0在向量SKIPIF1<0上的投影向量為(
).A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】向量SKIPIF1<0在向量SKIPIF1<0上的投影向量為SKIPIF1<0.故選:C.【典例2】(2023春·江蘇徐州·高二統(tǒng)考期中)已知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則向量SKIPIF1<0在SKIPIF1<0上的投影向量的坐標(biāo)是(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】D【詳解】因?yàn)镾KIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以向量SKIPIF1<0在SKIPIF1<0上的投影向量是SKIPIF1<0,所以向量SKIPIF1<0在SKIPIF1<0上的投影向量的坐標(biāo)是SKIPIF1<0,故選:D.【變式1】(2023·全國·高二專題練習(xí))已知SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的投影向量為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上的投影向量為SKIPIF1<0故選:B【變式2】(2023秋·廣東廣州·高二秀全中學(xué)校考期末)已知SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0在SKIPIF1<0上的投影向量為(
)A.1 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】解:因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上的投影向量為SKIPIF1<0故選:C題型10空間向量的平行關(guān)系(坐標(biāo)形式)【典例1】(2023·江蘇·高二專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則(
)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【答案】B【詳解】SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0由SKIPIF1<0,可得SKIPIF1<0,解之得SKIPIF1<0故選:B【典例2】(2023春·安徽合肥·高二??奸_學(xué)考試)已知兩個(gè)向量SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,則SKIPIF1<0的值為(
)A.1 B.2 C.4 D.8【答案】C【詳解】∵SKIPIF1<0,∴SKIPIF1<0,使SKIPIF1<0,得SKIPIF1<0,解得:SKIPIF1<0,所以SKIPIF1<0故選:C【典例3】(2023·高二單元測試)向量SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0______.【答案】SKIPIF1<0【詳解】因SKIPIF1<0,SKIPIF1<0,而SKIPIF1<0,則有SKIPIF1<0,解得SKIPIF1<0,即SKIPIF1<0又SKIPIF1<0,且SKIPIF1<0,則有SKIPIF
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年安全生產(chǎn)述職報(bào)告范例(六)
- 人教版三年級(jí)語文下冊(cè)詞語運(yùn)用
- 建筑用塑粉項(xiàng)目投資可行性研究分析報(bào)告(2024-2030版)
- 快遞員和保安合同協(xié)議書
- 2025年超市購物車項(xiàng)目分析評(píng)價(jià)報(bào)告
- 西藏吊車租用合同協(xié)議書
- 科技企業(yè)融資貸款申請(qǐng)審批
- 睡衣企業(yè)提升個(gè)性化服務(wù)策略制定與實(shí)施手冊(cè)
- 如何選用牛羊驅(qū)蟲藥物
- 鋼琴家教合同協(xié)議書范本
- 快樂跳舞-學(xué)前兒童舞蹈教育智慧樹知到期末考試答案2024年
- 紅旗E-HS3保養(yǎng)手冊(cè)
- 畜牧業(yè)的動(dòng)物保護(hù)與福利
- 寫作:說明的關(guān)鍵在說得“明”+課件-【中職專用】高一語文(高教版2023基礎(chǔ)模塊下冊(cè))
- 《鋼鐵是怎樣煉成的》選擇題100題(含答案)
- 機(jī)器人比賽教學(xué)課件
- 端午健康養(yǎng)生知識(shí)講座
- 市場主體遷移申請(qǐng)書(一照通行)
- 大班音樂《畢業(yè)歌》課件
- 應(yīng)急演練評(píng)估表模板
- 勞務(wù)外包服務(wù)項(xiàng)目投標(biāo)方案(技術(shù)方案)
評(píng)論
0/150
提交評(píng)論