廣東省佛山市南海區西樵高級中學2023-2024學年高一上學期第一次段考數學試題(解析版)_第1頁
廣東省佛山市南海區西樵高級中學2023-2024學年高一上學期第一次段考數學試題(解析版)_第2頁
廣東省佛山市南海區西樵高級中學2023-2024學年高一上學期第一次段考數學試題(解析版)_第3頁
廣東省佛山市南海區西樵高級中學2023-2024學年高一上學期第一次段考數學試題(解析版)_第4頁
廣東省佛山市南海區西樵高級中學2023-2024學年高一上學期第一次段考數學試題(解析版)_第5頁
已閱讀5頁,還剩6頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

高級中學名校試卷PAGEPAGE1廣東省佛山市南海區西樵高級中學2023-2024學年高一上學期第一次段考數學試題一、單選題(本大題共8小題,共40分.在每小題列出的選項中,選出符合題目的一項.)1.已知集合,,則()A. B. C. D.〖答案〗A〖解析〗因為,,所以由交集定義可得:.故選:A.2.命題:“,”的否定是()A, B.,C., D.,〖答案〗B〖解析〗因為全稱量詞命題的否定是存在量詞命題,

所以命題“,”的否定為:“,”.故選:B.3.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件〖答案〗B〖解析〗由,可得或,所以是的必要不充分條件.故選:B.4.若a>b,則下列結論正確的是()A B. C. D.〖答案〗D〖解析〗A選項,當時,,所以A選項錯誤;B選項,當時,,所以B選項錯誤;C選項,當時,,所以C選項錯誤;D選項,由于,所以,所以D選項正確.故選:D.5.已知,那么等于()A.2 B.3 C.4 D.5〖答案〗A〖解析〗解:因為,所以.故選:A.6.已知函數是冪函數,一次函數的圖像過點,則的最小值是()A.3 B. C. D.5〖答案〗B〖解析〗由是冪函數,可得,,即,,又由點在一次函數的圖像上,所以,因為,,所以由基本不等式,得,當且僅當時取等號,即當,時,.故選:B.7.已知函數是上的減函數,則實數的取值范圍是()A. B. C. D.〖答案〗C〖解析〗由題意可知:在上單調遞減,即;在上也單調遞減,即;又是上的減函數,則,∴,解得.故選:C.8.設函數,.用表示,中的較大者,記為,則的最小值是()A.1 B.3 C.0 D.〖答案〗A〖解析〗令,解得或,作出的圖象如下圖所示:由圖象可知:當時,有最小值,此時,故選:A.二、多選題(本大題共4小題,共20分.在每小題有多項符合題目要求.)9.與表示同一個函數的是()A. B. C. D.〖答案〗AC〖解析〗定義域為,且,對于A:,定義域也為,故A正確;對于B:的定義域為,定義域不一樣,故B錯誤;對于C:,定義域與〖解析〗式都相同,故C正確;對于D:的定義域為,定義域不一樣,故D錯誤.故選:AC.10.已知定義在區間上的一個偶函數,它在上的圖像如圖,則下列說法正確的是()A.這個函數有兩個單調增區間B.這個函數有三個單調減區間C.這個函數在其定義域內有最大值7D.這個函數在其定義域內有最小值〖答案〗BC〖解析〗由題意作出該函數在上的圖象,如圖所示.由圖象可知該函數有三個單調遞增區間,三個單調遞減區間,在其定義域內有最大值7,最小值不為,故選:BC.11.二次函數的圖象如圖所示,則下列結論中正確的是()A. B. C. D.〖答案〗ACD〖解析〗由題意得,對稱軸,則,故A正確,當時,,則,故C正確,當時,,則,故D正確,當時,,故B錯誤.故選:ACD.12.若實數滿足,則下列選項正確的是()A.最大值是6 B.的最小值是C.的最大值是 D.的最大值是3〖答案〗ACD〖解析〗,當且僅當時等號成立,,則,,時等號成立,A正確;,,時等號成立,D正確;.,當且僅當時取等號,,,所以時,取得最大值,B錯,C正確.故選:ACD.三、填空題(本大題共4小題,共20分.)13.如果集合中只有一個元素,則a的值是______.〖答案〗,4〖解析〗若,則集合,符合題意;若,則,解得.故〖答案〗為:.14.已知是定義在R上的奇函數,當時,是冪函數,且圖象過點,則____________.〖答案〗〖解析〗因為當時,是冪函數,所以時,可設,又過點,所以,可得,所以時,可得,又是定義在R上的奇函數,所以.故〖答案〗為:.15.函數在上不單調,則實數a的取值范圍為_______.〖答案〗〖解析〗可得的對稱軸為,在上不單調,則,解得.故〖答案〗為:.16.德國數學家高斯在證明“二次互反律”的過程中首次定義了取整函數,其中表示“不超過x的最大整數”,如,,.寫出滿足的一個x的值__________;關于x的方程的解集為__________.〖答案〗(〖答案〗不唯一);〖解析〗根據取整函數的定義,當時,,故取;,即,解得.故〖答案〗為:(〖答案〗不唯一);.四、解答題(本大題共6小題,共60分.解答應寫出文字說明,證明過程或演算步驟.)17.已知集合,.(1)當時,求;(2)若,求實數的取值范圍.解:(1)當時,,而,所以.(2)因為,所以,當時,,即,此時滿足;當時,要使成立,則需滿足,解得,綜上所述,實數的取值范圍是或.18.已知函數.(1)分別求和的值;(2)若,求的值.解:(1),因為,所以.(2)若,則,解得(舍)或;若,則,解得(舍)或;綜上:.19.已知函數是定義在的奇函數,且當時.(1)現已畫出函數在軸左側的圖象,如圖所示,請補出函數的完整圖象,并根據圖象直接寫出函數的單調區間及時的值域;(2)求的〖解析〗式.解:(1)是奇函數,圖象關于原點中心對稱,故函數的完整圖象如圖所示:,由圖象可知,函數的單調減區間是和,增區間是,時,的值域為.(2)是奇函數,,設時,,依題意知,即,故;時,,故,故的〖解析〗式為.20.小明將上周每天騎車上學路上的情況用圖像表示:很遺憾圖像的先后次序不小心被打亂了.還好小明同時用文字進行了記錄:周一:勻速騎車前進;周二:勻速騎車前進,中間遇到紅燈停了一次;周三:騎車出門晚了,越騎越快;周四:騎車出門后一會兒想起忘帶東西又加速回去拿;周五:……(1)請將圖像的編號填入表格中對應日期的下方,日期周一周二周三周四周五圖像編號(2)本周小明打算跑步上學,多消耗點熱量.已知單位時間消耗的熱量(卡/小時)與跑步的平均速度(千米/小時)滿足函數,小明家到學校的距離是1.5千米,假設小明上學路上不停頓,則他從家跑步到學校最多可以消耗多少熱量?解:(1)根據實際情況,填表如下:日期

周一

周二

周三

周四

周五

圖像編號

E

A

C

BD(2)由題意可得,上學用時小時,設消耗的熱量為,則,當且僅當,即時,取得最大值125,故他從家跑步到學校最多可以消耗最多熱量125卡.21.已知函數,,從下面兩個條件中任選一個條件,求出,的值,并解答后面的問題.(注:如果選擇多個條件分別解答,按第一個解答計分)①已知函數,在定義域上為偶函數;②已知函數在上的值域為.(1)選擇______,求,的值;(2)證明上單調遞增;(3)解不等式.解:(1)選①:因為在上是偶函數,則,且,所以,;選②:當時,在上單調遞增,則有,得,.(2)由①或②得,,任取,且,則,∵,則,,∴,即則在上單調遞增.(3)∵,,又,∴為奇函數,由,得,又因為在上單調遞增,則,解得,所以.22.定義在R上的函數滿足:對任意,都有,則稱函數是R上的凹函數.已知二次函數.(1)求證:函數是凹函數;(2)求在上的最小值,并求出的值域.解:(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論