




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市上師大附中2023年數學高二上期末達標檢測模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.的展開式中的系數是()A. B.C. D.2.由小到大排列的一組數據:,其中每個數據都小于,另一組數據2、的中位數可以表示為()A. B.C. D.3.、是橢圓的左、右焦點,點在橢圓上,,過作的角平分線的垂線,垂足為,則的長為A.1 B.2C.3 D.44.已知直線與圓相交于,兩點,則的取值范圍為()A. B.C. D.5.已知圓與直線至少有一個公共點,則的取值范圍為()A. B.C. D.6.曲線:在點處的切線方程為A. B.C. D.7.在平面直角坐標系xOy中,點(0,4)關于直線x-y+1=0的對稱點為()A.(-1,2) B.(2,-1)C.(1,3) D.(3,1)8.已知圓的半徑為,平面上一定點到圓心的距離,是圓上任意一點.線段的垂直平分線和直線相交于點,設點在圓上運動時,點的軌跡為,當時,軌跡對應曲線的離心率取值范圍為()A. B.C. D.9.在中,角、、所對的邊分別是、、.已知,,且滿足,則的取值范圍為()A. B.C. D.10.某市2016年至2020年新能源汽車年銷量y(單位:百臺)與年份代號x的數據如下表:年份20162017201820192020年份代號x01234年銷量y1015m3035若根據表中的數據用最小二乘法求得y關于x的回歸直線方程為,則表中m的值為()A.22 B.20C.30 D.32.511.已知,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分也不必要條件12.已知等比數列的前項和為,若,,則()A.20 B.30C.40 D.50二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,有且只有一個零點,則實數的取值范圍是_______.14.若直線與曲線沒有公共點,則實數的取值范圍是____________15.命題的否定是____________________.16.半徑為的球的體積為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面ABCD是矩形,M是PA的中點,N是BC的中點,平面ABCD,且,(1)求證:∥平面PCD;(2)求平面MBC與平面ABCD夾角的余弦值18.(12分)如圖,四棱錐中,側面是邊長為4的正三角形,且與底面垂直,底面是菱形,且,為的中點(1)求證:;(2)求點到平面的距離19.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足bcosA+(2c+a)cosB=0(1)求角B的大小;(2)若b=4,△ABC的面積為,求a+c的值20.(12分)已知等差數列和正項等比數列滿足(1)求的通項公式;(2)求數列的前n項和21.(12分)已知拋物線的焦點到準線的距離為2.(1)求C的方程:(2)過C上一動點P作圓兩條切線,切點分別為A,B,求四邊形PAMB面積的最小值.22.(10分)已知是公比不為1的等比數列,,且為的等差中項.(1)求的公比;(2)求的通項公式及前n項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】根據二項式定理求出答案即可.【詳解】的展開式中的系數是故選:B2、C【解析】先根據題意對數據進行排列,然后由中位數的定義求解即可【詳解】因為由小到大排列的一組數據:,其中每個數據都小于,所以另一組數據2、從小到大的排列為,所以這一組數的中位數為,故選:C3、A【解析】延長交延長線于N,則選:A.【點睛】涉及兩焦點問題,往往利用橢圓定義進行轉化研究,而角平分線性質可轉化到焦半徑問題,兩者切入點為橢圓定義.4、C【解析】求得直線恒過的定點,找出弦長取得最值的狀態,利用弦長公式求解即可.【詳解】因直線方程為:,整理得,故該直線恒過定點,又,故點在圓內,又圓的圓心為則,此時直線過圓心;當直線與直線垂直時,取得最小值,此時.故的取值范圍為.故選:.5、C【解析】利用點到直線距離公式求出圓心到直線的距離范圍,從而求出的取值范圍.【詳解】圓心到直線的距離,當且僅當時等號成立,故只需即可.故選:C6、A【解析】因為,所以曲線在點(1,0)處的切線的斜率為,所以切線方程為,即,選A7、D【解析】設出點(0,4)關于直線的對稱點的坐標,根據題意列出方程組,解方程組即可【詳解】解:設點(0,4)關于直線x-y+1=0的對稱點是(a,b),則,解得:,故選:D8、D【解析】分點A在圓內,圓外兩種情況,根據中垂線的性質,結合橢圓、雙曲線的定義可判斷軌跡,再由離心率計算即可求解.【詳解】當A在圓內時,如圖,,所以的軌跡是以O,A為焦點的橢圓,其中,,此時,,.當A在圓外時,如圖,因為,所以軌跡是以O,A為焦點的雙曲線,其中,,此時,,.綜上可知,.故選:D9、D【解析】利用正弦定理邊角互化思想化簡得出,利用余弦定理化簡得出,結合,根據函數在上的單調性可求得的取值范圍.【詳解】且,所以,由正弦定理得,即,,,所以,,則,由余弦定理得,,則,由于雙勾函數在上單調遞增,則,即,所以,.因此,的取值范圍為.故選:D.【點睛】本題考查三角形內角余弦值的取值范圍的求解,考查了余弦定理以及正弦定理邊角互化思想的應用,考查計算能力,屬于中等題.10、B【解析】求出樣本中心的橫坐標,代入回歸直線方程,求出樣本中心的縱坐標,然后求解即可【詳解】因為,代入回歸直線方程為,所以,,于是得,解得故選:B11、C【解析】根據充要條件的定義進行判斷【詳解】解:因為函數為增函數,由,所以,故“”是“”的充分條件,由,所以,故“”是“”的必要條件,故“”是“”的充要條件故選:C12、B【解析】根據等比數列前項和的性質進行求解即可.【詳解】因為是等比數列,所以成等比數列,即成等比數列,顯然,故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題知方程,,有且只有一個零點,進而構造函數,利用導數研究函數單調性與函數值得變化情況,作出函數的大致圖像,數形結合求解即可.【詳解】解:因為函數,,有且只有一個零點,所以方程,,有且只有一個零點,令,則,,令,則所以為上的單調遞減函數,因為,所以當時,;當時,;所以當時,;當時,,所以在上單調遞增,在上單調遞減,因為當趨近于時,趨近于,當趨近于時,趨近于,且,時,,故的圖像大致如圖所示,所以方程,,有且只有一個零點等價于或.所以實數的取值范圍是故答案為:14、;【解析】可化簡曲線的方程為,作出其圖形,數形結合求臨界值即可求解.【詳解】由可得,所以曲線為以為圓心,的下半圓,作出圖形如圖:當直線過點時,,可得,當直線與半圓相切時,則圓心到直線的距離,可得:或(舍),若直線與曲線沒有公共點,由圖知:或,所以實數的取值范圍是:,故答案為:15、##【解析】根據全稱量詞命題的否定的知識寫出正確答案.【詳解】全稱量詞命題的否定是存在量詞命題,要注意否定結論,所以命題否定是:故答案為:16、【解析】根據球的體積公式求解【詳解】根據球的體積公式【點睛】球的體積公式三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2)【解析】(1)取PD的中點E,連接ME,CE,易證四邊形是平行四邊形,得到,再利用線面平行的判定定理證明;(2)建立空間直角坐標系,求得平面MBC的一個法向量,易知平面ABCD的一個法向量為:,由求解.【小問1詳解】證明:如圖所示:取PD的中點E,連接ME,CE,因為底面ABCD是矩形,M是PA的中點,N是BC的中點,所以,所以四邊形是平行四邊形,所以,又平面PCD,平面PCD,所以∥平面PCD;【小問2詳解】建立如圖所示空間直角坐標系:則,所以,設平面MBC的一個法向量為,則,即,令,得,易知平面ABCD的一個法向量為:,所以,所以平面MBC與平面ABCD的夾角的余弦值為.18、(1)證明見解析;(2).【解析】(1)取的中點,連接,,,先證明平面,再由平面得,(2)等體積法求解.根據題目條件,先證明為三棱錐的高,再求出以為頂點,為底面的三棱錐的體積和以為頂點,為底面的三棱錐的體積,根據,求點到平面的距離.【詳解】(1)證明:如圖,取的中點,連接,,依題意可知,,均為正三角形,∴,又∵,∴平面又平面,∴(2)由(1)可知,∵平面平面,平面平面,平面,∴平面,即為三棱錐的高由題意得,∵為的中點,∴在中,,∴,,∴在中,邊上的高,∴的面積的面積點到平面的距離即點到平面的距離設點到平面的距離為,由,得,即,解得,即點到平面的距離為19、(1)(2)【解析】(1)利用正弦定理化簡,通過兩角和與差的三角函數求出,即可得到結果(2)利用三角形的面積求出,通過由余弦定理求解即可【詳解】解:(1)因為bcosA=(2c+a)cos(π﹣B),所以sinBcosA=(﹣2sinC﹣sinA)cosB所以sin(A+B)=﹣2sinCcosB∴cosB=﹣∴B=(2)由=得ac=4由余弦定理得b2=a2+c2+ac=(a+c)2+ac=16∴a+c=2【點睛】本題主要考查了利用正、余弦定理及三角形的面積公式解三角形問題,其中在解有關三角形的題目時,要有意識地考慮用哪個定理更合適,或是兩個定理都要用.一般地,如果式子中含有角的余弦或邊的二次式時,要考慮用余弦定理;如果式子中含有角的正弦或邊的一次式時,則考慮用正弦定理;以上特征都不明顯時,則要考慮兩個定理都有可能用到20、(1);(2)【解析】(1)根據條件列公差與公比方程組,解得結果,代入等差數列通項公式即可;(2)根據等比數列求和公式直接求解.【詳解】(1)設等差數列公差為,正項等比數列公比為,因為,所以因此;(2)數列的前n項和【點睛】本題考查等差數列以及等比數列通項公式、等比數列求和公式,考查基本分析求解能力,屬基礎題.21、(1)(2)【解析】(1)根據拋物線方程求出交點坐標和準線方程,求出p即可;(2)設,利用兩點坐標求距離公式求出,根據四邊形PAMB的面積得到關于的二次函數,結合二次函數的性質即可得出
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 基層醫療衛生機構信息化建設中的醫療信息化與疾病預防控制報告
- 月嫂技能培訓課件
- 新零售背景下便利店智能化供應鏈金融創新報告
- 薄膜干涉題目及答案
- 安全質量培訓試題及答案
- 咖啡連鎖品牌擴張戰略布局報告:2025年市場拓展與品牌戰略優化方案創新
- 安全護理的試題及答案
- 單位音樂培訓課件模板
- 安檢排爆培訓課件
- cpa培訓課件下載
- 湖北省黃岡市黃州區2023-2024學年六年級下學期期末考試英語試題
- TYNZYC 0095-2022 綠色藥材 金果欖(青牛膽)栽培技術規程
- 2024年廣西壯族自治區中考歷史真題(含解析 )
- 幼兒園戶外混齡建構游戲案例分析
- 高二下學期7月期末教學質量檢測語文試題(含答案)
- 電線老化檢測委托
- 創業修煉智慧樹知到期末考試答案章節答案2024年同濟大學
- JGJ52-2006 普通混凝土用砂、石質量及檢驗方法標準
- FFU龍骨吊頂防墜研究及應用-2023.12.11王國棟修
- 河南省洛陽市2023-2024學年高一下學期期末考試物理試卷
- 2024年中國中式養生水行業發展趨勢洞察報告
評論
0/150
提交評論