人教版六年級數(shù)學上冊【課本】六年級(上)第13講 概率初步_第1頁
人教版六年級數(shù)學上冊【課本】六年級(上)第13講 概率初步_第2頁
人教版六年級數(shù)學上冊【課本】六年級(上)第13講 概率初步_第3頁
人教版六年級數(shù)學上冊【課本】六年級(上)第13講 概率初步_第4頁
人教版六年級數(shù)學上冊【課本】六年級(上)第13講 概率初步_第5頁
已閱讀5頁,還剩2頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

第十三講概率初步日常生活中,我們經(jīng)常會遇到一些無法事先預測結(jié)果的事情,比如拋擲一枚硬幣出現(xiàn)正面還是反面,明天會不會下雨,歐洲杯誰會奪冠等,這些事情我們稱作隨機事件,它們的結(jié)果都有不確定性,是無法預知的.盡管無法預知結(jié)果,但有時我們可以根據(jù)一些跡象或者經(jīng)驗了解結(jié)果發(fā)生的可能性的大小,例如:今天烏云密布,那么明天很有可能下雨;中國足球隊參加世界杯奪冠的可能性非常??;一次投擲10枚硬幣,出現(xiàn)10個正面的可能性非常小.為了能夠更準確的描述這種“可能性的大小”,法國數(shù)學家費馬和帕斯卡在17世紀創(chuàng)立了概率論,把對隨機事件的研究上升到一門科學.(當時他們通過信件討論了社會上的兩個熱點問題——擲骰子問題和比賽獎金分配問題)概率基本概念概率反應了一個隨機事件結(jié)果發(fā)生的可能性,例如:投擲一枚硬幣,正面和反面出現(xiàn)的可能性相同,所以概率均為;投擲一個骰子,每種點數(shù)出現(xiàn)的可能性相同,所以概率均為.概率是0~1之間用來表示事件可能性大小的一個數(shù)值.關于概率,大家要有一個正確的認識,投擲1枚硬幣,正面出現(xiàn)的概率為,并不是說投擲2次一定會有1次正面,而是說每次扔都有可能性出現(xiàn)正面.雖然投擲2次硬幣,不見得正面會出現(xiàn)一半,但是,投擲次數(shù)越多,正面出現(xiàn)的比例越接近一半(例如無論誰投擲10000次硬幣,正面出現(xiàn)的比例都會很接近0.5).(這個特點在概率論中被稱為大數(shù)定律)換言之,概率可以展示出大量重復實驗結(jié)果的規(guī)律性.基于此,在17世紀概率剛創(chuàng)始的年代,人們提出了古典概率模型.古典概率模型古典概率模型是最簡單的概率計算模型,它的想法非常簡單,用“條件要求的情況總量”除以“全部情況數(shù)量”即可.古典概型中,第一個重要條件是“全部情況的數(shù)量是有限個”,下面我們先用幾個簡單例子來看一下古典概型的用法:1.A、B、C排成一排,共有6種排法,其中A占排頭的方法共2種,所以A站排頭的概率是.2.從3個男生、2個女生中,隨意選出2個人去參加數(shù)學競賽,共有10種方法,其中選出2個男生的方法數(shù)有3種,所以選出2個男生的概率是.3.3個男生、2個女生站成一排照相共有120種站法,其中女生互不相鄰的站法共72種,所以3男、2女站成一排,女生互不相鄰的概率是.上面的例子都比較簡單,因為計算概率所需要的兩個數(shù)都非常好算,接來下我們再看幾個例子,從這幾個例子中,大家要能體會到古典概型的第二個重要條件——等可能性.4.從10個紅球、1個白球中,隨意的取出1個球,取到紅球的概率是.5.投擲兩枚硬幣,出現(xiàn)2個正面的概率是,出現(xiàn)1正1反的概率是,出現(xiàn)2反的概率是.6.從3個紅球、2個白球中,隨意取出2個球,取到2個紅球的概率是.例4比較簡單,在例5中,從硬幣的結(jié)果看,只有3種情況——“2正、1正1反、2反”,但概率都不是,因為這3種結(jié)果出現(xiàn)的可能性不同,給硬幣編上A和B,那么出現(xiàn)1正1反有兩種情況“A正B反、A反B正”,而2正和2反都只有1種情況(投擲2枚硬幣共4種情況).而例6和例2是相同的題目(把紅球換成男生,白球換成女生即可).從這3個例子可以看出,在計算概率時,不能簡單的看有幾種最終結(jié)果,因為結(jié)果必須是“等可能”才行(例4的結(jié)果只有紅球和白球兩種,但概率顯然不相等).為了計算“等可能”的結(jié)果,一個簡單方法是給每個物體編號,例如例4,假設紅球是1號到10號,白球是11號,那么顯然共有11種不同取法,其中有10種取到紅球,所以概率是.4個男生、2個女生隨機站成一排照相,請問:(1)女生恰好站在一起的概率是多少?(2)女生互不相鄰的概率是多少?(3)男生互不相鄰的概率是多少?

「分析」對于排隊問題大家還記得“捆綁”和“插空”法嗎?

練習1、關羽、張飛、趙云、黃忠、馬超隨機的站成一行上臺領獎,請問:(1)關羽站在正中間的概率是多少?(2)關羽和張飛相鄰的概率是多少?(3)關羽和張飛中間恰好隔著一個人的概率是多少?

一個不透明的袋子里裝著2個紅球,3個黃球和4個黑球.從口袋中任取一個球,請問:(1)這個球是紅球的概率是多少?(2)這個球是黃球或者是黑球的概率是多少?(3)這個球是綠球的概率是多少;不是綠球的概率是多少?「分析」首先計算一下取球的總的情況數(shù),再計算問題要求的取球情況數(shù).

練習2、北京數(shù)學學校從集訓隊中隨機選出3個人去參加比賽,已知集訓隊中共有4個男生、3個女生,請問:(1)選出3個男生的概率是多少?(2)選出2男1女的概率是多少?

一次投擲兩個骰子,請問:(1)兩個骰子點數(shù)相同的概率是多少?(2)兩個骰子點數(shù)和為5的概率是多少?(3)兩個骰子點數(shù)差是1的概率是多少?

「分析」骰子是一個正方體,每個面上的點數(shù)從1到6,可以按題目要求枚舉一些情況,根據(jù)枚舉結(jié)果總結(jié)規(guī)律計算最后答案.

練習3、一次投擲3枚硬幣,請問:(1)出現(xiàn)3個正面的概率是多少?(2)出現(xiàn)1正2反的概率是多少?

兩個盒子中分別裝有形狀大小相同的黑球、白球和黃球各1個,現(xiàn)在從兩個盒子中各取一個球,那么它們同色的概率是多少?不同色的概率是多少?

「分析」任取兩球它們顏色的可能情況有多少種?其中有多少同色情況?

練習4、一個不透明的袋子里裝著2個紅球、3個黃球和4個黑球.從中任取兩個球,請問:取出2個黑球的概率是多少?取出1紅1黃的概率是多少?取出1黃1黑的概率是多少?

概率的獨立性如果兩個或多個隨機事件的結(jié)果互不影響,則稱它們相互獨立,例如:A買彩票是否中獎和B買彩票是否中獎是獨立的;甲考試能否及格和乙考試能否及格是獨立的;如果兩個隨機事件相互獨立,那么它們同時發(fā)生的概率是它們單獨發(fā)生概率的乘積.神射手和神槍手兩人打靶,已知他們的命中率分別為0.8和0.9,他們每人開一槍,那么他們都命中的概率是多少?都沒命中的概率是多少?

「分析」理解概率獨立性,根據(jù)獨立性解題即可.

需要分步計算的概率問題有些隨機事件,在發(fā)生時有先后順序,這時在計算概率時需要分步計算,這時只要把每步的概率算出來,然后相乘即可,例如:一個盒子中裝有形狀大小相同的黑球和白球各2個,從中先取出1個球,然后從剩下的球中再取出一個,那么第一次抽到黑球的概率是,第二次抽到黑球的概率是,所以兩次都抽到黑球的概率是.在分步拿球的問題中,大家還要注意“無放回拿球”和“有放回拿球”的區(qū)別,它關系到每步的概率計算結(jié)果.例如:一個盒子中裝有形狀大小相同的黑球和白球各2個,從中先取出1個球,然后把它放回去,再從盒子中取出一個,那么兩次都抽到黑球的概率是.3個人進行抽簽,已知3個簽中只有一個寫有“中獎”,3個人先后抽取,那么第一個抽和第二個抽的中獎概率哪個大?

「分析」分步計算概率即可.

小概率事件之買彩票彩票市場產(chǎn)生于16世紀的意大利,從古羅馬、古希臘開始,即有彩票開始發(fā)行.發(fā)展到今天,世界上已經(jīng)有139個國家和地區(qū)發(fā)行彩票,規(guī)模比較大的國家和地區(qū)有美國、西班牙、德國、日本、法國、英國、意大利、加拿大、希臘、巴西、泰國、香港、韓國、新加坡、印度、挪威、比利時、澳大利亞、新西蘭、南非、俄羅斯、保加利亞等.發(fā)行彩票集資可以說是現(xiàn)代彩票的共同目的.各國、各地區(qū)的集資目的多種多樣,社會福利、公共衛(wèi)生、教育、體育、文化是主要目標.以合法形式、公平原則,重新分配社會的閑散資金,協(xié)調(diào)社會的矛盾和關系,使彩票具有了一種特殊的地位和價值.目前,彩票的種類隨著社會的發(fā)展而發(fā)展.在不斷追求提高彩票娛樂性的過程中,彩票類型已經(jīng)從以傳統(tǒng)型彩票為主發(fā)展到傳統(tǒng)型彩票、即開型彩票和樂透彩票等多種彩票并存的局面.2011年,全國彩票銷售規(guī)模首次突破了2000億元,達到2215億元,彩票公益金籌集量達634億元.1987年到2011年,我國累計銷售彩票達10951億元,累計籌集彩票公益金3433億元.在我國有兩個彩票發(fā)行機構(gòu),進而形成了以下彩票:福利彩票:福利彩票是指1987年以來由中國福利彩票管理中心發(fā)行的彩票.福利彩票早期有傳統(tǒng)型彩票和即開型彩票,近年來主要有即開型彩票(如刮刮樂)、樂透型彩票(如雙色球、36選5)和數(shù)字型彩票(如3D)三種,后兩種均是電腦型彩票.體育彩票:體育彩票是指由1994年3月以來由中國體育彩票管理中心發(fā)行的彩票.其種類主要有即開型彩票(如頂呱刮)、樂透型彩票(如大樂透、22選).截止到2013年世界上中得彩票最大額為一個美國80多歲的老太太,獨中5.9億美元.

作業(yè)在一只口袋里裝著4個紅球,5個黃球和6黑球.從口袋中任取一個球,請問:

(1)這個球是紅球的概率有多少?

(2)這個球是黃球或者是黑球的概率有多少?

(3)如果從口袋中任取兩個球出來,取到兩個紅球的概率是多少?

小高與墨莫做游戲:由小高拋出3枚硬幣,如果拋出的結(jié)果中,有2枚或

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論