遼寧省遼河油田二中2023-2024學年數學高二上期末統考試題含解析_第1頁
遼寧省遼河油田二中2023-2024學年數學高二上期末統考試題含解析_第2頁
遼寧省遼河油田二中2023-2024學年數學高二上期末統考試題含解析_第3頁
遼寧省遼河油田二中2023-2024學年數學高二上期末統考試題含解析_第4頁
遼寧省遼河油田二中2023-2024學年數學高二上期末統考試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

遼寧省遼河油田二中2023-2024學年數學高二上期末統考試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.雙曲線的離心率為,則其漸近線方程為A. B.C. D.2.函數區間上有()A.極大值為27,極小值為-5 B.無極大值,極小值為-5C.極大值為27,無極小值 D.無極大值,無極小值3.若數列1,a,b,c,9是等比數列,則實數b的值為()A.5 B.C.3 D.3或4.設為等差數列的前項和,,,則A.-6 B.-4C.-2 D.25.過點且平行于直線的直線的方程為()A. B.C. D.6.設等差數列的前n項和為,且,則()A.64 B.72C.80 D.1447.為了更好地解決就業問題,國家在2020年提出了“地攤經濟”為響應國家號召,有不少地區出臺了相關政策去鼓勵“地攤經濟”.某攤主2020年4月初向銀行借了免息貸款8000元,用于進貨,因質優價廉,供不應求,據測算:每月獲得的利潤是該月初投入資金的20%,每月底扣除生活費800元,余款作為資金全部用于下月再進貨,如此繼續,預計到2021年3月底該攤主的年所得收入為()(取,)A.24000元 B.26000元C.30000元 D.32000元8.為了解青少年視力情況,統計得到名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個位數,葉表示十分位數,則該組數據的中位數是()A. B.C. D.9.函數在點處的切線方程的斜率是()A. B.C. D.10.若實數滿足,則點不可能落在()A.第一象限 B.第二象限C.第三象限 D.第四象限11.若點P為拋物線y=2x2上的動點,F為拋物線的焦點,則|PF|的最小值為()A.2 B.C. D.12.直線與圓的位置關系是()A.相交 B.相切C.相離 D.都有可能二、填空題:本題共4小題,每小題5分,共20分。13.在區間上隨機取1個數,則取到的數小于2的概率為___________.14.已知數列滿足,,則數列的前n項和______15.已知函數在處有極值.則=________16.已知向量與是平面的兩個法向量,則__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,,(1)若,為真命題,為假命題,求實數x的取值范圍;(2)若是的充分不必要條件,求實數m的取值范圍18.(12分)已知如圖①,在菱形ABCD中,且,為AD的中點,將沿BE折起使,得到如圖②所示的四棱錐,在四棱錐中,求解下列問題:(1)求證:BC平面ABE;(2)若P為AC中點,求二面角的余弦值.19.(12分)已知二次函數.(1)若時,不等式恒成立,求實數的取值范圍.(2)解關于的不等式(其中).20.(12分)已知橢圓C經過,兩點(1)求橢圓C的標準方程;(2)直線l與C交于P,Q兩點,M是PQ的中點,O是坐標原點,,求證:的邊PQ上的高為定值21.(12分)已知函數.(1)求函數的極值;(2)是否存在實數,,,對任意的正數,都有成立?若存在,求出,,的所有值;若不存在,請說明理由.22.(10分)求下列不等式的解集:(1);(2).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】分析:根據離心率得a,c關系,進而得a,b關系,再根據雙曲線方程求漸近線方程,得結果.詳解:因為漸近線方程為,所以漸近線方程為,選A.點睛:已知雙曲線方程求漸近線方程:.2、B【解析】求出得出的單調區間,從而可得答案.【詳解】當時,,單調遞減.當時,,單調遞增.所以當時,取得極小值,極小值為,無極大值.故選:B3、C【解析】根據等比數列的定義,利用等比數列的通項公式求解【詳解】解:設該等比數列公比為q,∵數列1,a,b,c,9是等比數列,∴,,∴,故,解得,∴故選:C4、A【解析】由已知得解得故選A考點:等差數列的通項公式和前項和公式5、B【解析】根據平行設直線方程,代入點計算得到答案.【詳解】設直線方程為,將點代入直線方程得到,解得.故直線方程為:.故選:B.6、B【解析】利用等差數列下標和性質,求得,再用等差數列前項和公式即可求解.【詳解】根據等差數列的下標和性質,,解得,.故選:B.7、D【解析】設,從4月份起每月底用于下月進借貨的資金依次記為,由題意得出的遞推關系,變形構造出等比數列,由得其通項公式后可得結論【詳解】設,從4月份起每月底用于下月進借貨的資金依次記為,,、同理可得,所以,而,所以數列是等比數列,公比為,所以,,總利潤為故選:D【點睛】思路點睛:本題考查數列的實際應用.解題方法是用數列表示月初進貨款,得出遞推關系,然后構造等比數列求解8、B【解析】將樣本中的數據由小到大進行排列,利用中位數的定義可得結果.【詳解】將樣本中的數據由小到大進行排列,依次為:、、、、、、、、、,因此,這組數據的中位數為.故選:B.9、D【解析】求解導函數,再由導數的幾何意義得切線的斜率.【詳解】求導得,由導數的幾何意義得,所以函數在處切線的斜率為.故選:D10、B【解析】作出給定的不等式組表示的平面區域,觀察圖形即可得解.【詳解】因實數滿足,作出不等式組表示的平面區域,如圖中陰影部分,觀察圖形知,陰影區域不過第二象限,即點不可能落在第二象限.故選:B11、D【解析】根據拋物線的定義得出當點P在拋物線的頂點時,|PF|取最小值.【詳解】根據題意,設拋物線y=2x2上點P到準線的距離為d,則有|PF|=d,拋物線的方程為y=2x2,即x2=y,其準線方程為y=-,∴當點P在拋物線的頂點時,d有最小值,即|PF|min=.故選:D12、A【解析】求出圓心到直線的距離,然后與圓的半徑進行大小比較即可求解.【詳解】解:圓的圓心,,因為圓心到直線的距離,所以直線與圓的位置關系是相交,故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據幾何概型計算公式進行求解即可.【詳解】設“區間上隨機取1個數”,對應集合為,區間長度為3,“取到的數小于2”,對應集合為,區間長度為1,所以.故答案為:14、【解析】先求出,利用裂項相消法求和.【詳解】因為數列滿足,,所以數列為公差d=2的等差數列,所以,所以所以.故答案為:.15、4【解析】根據極值點概念求解【詳解】,由題意得,,經檢驗滿足題意故答案為:416、【解析】由且為非零向量可直接構造方程求得,進而得到結果.【詳解】由題意知:,,解得:(舍)或,.故答案為:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】(1)化簡命題p,將m=3代入求出命題q,再根據或、且連接的命題真假確定p,q真假即可得解;(2)由給定條件可得p是q的必要不充分條件,再列式計算作答.【詳解】(1)依題意,:,當時,:,因為真命題,為假命題,則與一真一假,當真假時,即且或,無解,當假真時,即或且,解得或,綜上得:或,所以實數x的取值范圍是;(2)因是的充分不必要條件,則p是q的必要不充分條件,于是得,解得,所以實數m的取值范圍是18、(1)證明見解析;(2)【解析】(1)利用題中所給的條件證明,,因為,所以,,即可證明平面;(2)先證明平面,以為坐標原點,,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標系,求出平面的一個法向量,平面的一個法向量,利用向量的夾角公式即可求解【詳解】(1)在圖①中,連接,如圖所示:因為四邊形為菱形,,所以是等邊三角形.因為為的中點,所以,.又,所以.在圖②中,,所以,即.因為,所以,.又,,平面.所以平面.(2)由(1)知,,因為,,平面.所以平面.以為坐標原點,,,的方向分別為軸,軸,軸,建立如圖所示的空間直角坐標系:則,,,,.因為為的中點,所以.所以,.設平面的一個法向量為,由得.令,得,,所以.設平面的一個法向量為.因為,由得令,,,得則,由圖象可知二面角為銳角,所以二面角的余弦值為.19、(1);(2)答案見解析.【解析】(1)結合分離常數法、基本不等式求得的取值范圍.(2)將原不等式轉化為,對進行分類討論,由此求得不等式的解集.【詳解】(1)不等式即為:,當時,可變形為:,即.又,當且僅當,即時,等號成立,,即.實數的取值范圍是:.(2)不等式,即,等價于,即,①當時,不等式整理為,解得:;當時,方程的兩根為:,.②當時,可得,解不等式得:或;③當時,因為,解不等式得:;④當時,因為,不等式的解集為;⑤當時,因為,解不等式得:;綜上所述,不等式的解集為:①當時,不等式解集為;②當時,不等式解集為;③當時,不等式解集為;④當時,不等式解集為;⑤當時,不等式解集為.20、(1)(2)證明見解析【解析】(1)設出橢圓方程,根據的坐標求得橢圓方程.(2)對直線的斜率分成存在和不存在兩種情況進行分類討論,求得的邊PQ上的高來證得結論成立.【小問1詳解】設橢圓方程為,將坐標代入得,所以橢圓方程為.小問2詳解】當直線的斜率不存在時,關于軸對稱,由于,所以,即,直線與橢圓有兩個交點,符合題意.所以的邊PQ上的高為.當直線的斜率不存在時,設直線的方程為,由消去并化簡得①,設,則,.由于M是PQ的中點且,所以,所以,即,,,.此時①的.原點到直線的距離為.綜上所述,的邊PQ上的高為定值21、(1)極小值為:,無極大值(2),,【解析】(1)先求導求單調性,再判斷極值點求極值即可;(2)易知,只需要為函數和的公切線即可,求出公切線,代入后分別證明和成立即可.【小問1詳解】由題意知:,令,解得,令,解得,所以函數在單調遞增,在單調遞減,所以為函數的極小值點,即極小值為:,無極大值.【小問2詳解】設,易知,所以點是和的公共點,要使成立,只需要為函數和的公切線即可,由(1)知,,所以在點處的切線為:,同理可得在點處的切線為:,由題意知為同一條直線,所以解得,即等價于;下面證明這個式子成立:首先證明等價于,設,所以,恒成立,所以單調遞增,易知,所以當時,,當時,,所以在單調遞減,在單調遞增,所以,故不等式成立,即成立;再證明:等價于,設,所以,所以當時,,當時,,所以在單調遞增,在單調遞減,所以,故不等式成立,即成立;綜上所述,存在,,使得成立.故:,,.【點睛】函數的單調性是函數的重要性質之一,它的應用貫穿于整個高中數學的教學之中.某些數學問題從表面上看似乎與函數的單調性無關,但如果我們能挖掘其內在聯系,抓住其本質,那么運用函數的單調性解題,能起到化難

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論