




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省信宜市2023-2024學年數學高二上期末經典試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.從甲地到乙地要經過3個十字路口,設各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為,,,一輛車從甲地到乙地,恰好遇到2個紅燈的概率為()A. B.C. D.2.已知圓與圓,則兩圓的位置關系是()A.外切 B.內切C.相交 D.相離3.下列命題中,結論為真命題的組合是()①“”是“直線與直線相互垂直”的充分而不必要條件②若命題“”為假命題,則命題一定是假命題③是的必要不充分條件④雙曲線被點平分的弦所在的直線方程為⑤已知過點的直線與圓的交點個數有2個.A.①③④ B.②③④C.①③⑤ D.①②⑤4.已知傾斜角為的直線與雙曲線,相交于,兩點,是弦的中點,則雙曲線的漸近線的斜率是()A. B.C. D.5.如圖,在直三棱柱中,且,點E為中點.若平面過點E,且平面與直線AB所成角和平面與平面所成銳二面角的大小均為30°,則這樣的平面有()A.1個 B.2個C.3個 D.4個6.如圖,已知正方體,點P是棱中點,設直線為a,直線為b.對于下列兩個命題:①過點P有且只有一條直線l與a、b都相交;②過點P有且只有兩條直線l與a、b都成角.以下判斷正確的是()A.①為真命題,②為真命題 B.①為真命題,②為假命題C.①為假命題,②為真命題 D.①為假命題,②為假命題7.圓與圓的公切線的條數為()A.1 B.2C.3 D.48.如圖,過拋物線的焦點的直線與拋物線交于兩點,與其準線交于點(點位于之間)且于點且,則等于()A. B.C. D.9.已知函數,那么的值為()A. B.C. D.10.設雙曲線C:的左、右焦點分別為,點P在雙曲線C上,若線段的中點在y軸上,且為等腰三角形,則雙曲線C的離心率為()A B.2C. D.11.已知三棱錐O-ABC,點M,N分別為AB,OC的中點,且,用表示,則等于()A. B.C. D.12.已知橢圓的左、右焦點分別為、,點A是橢圓短軸的一個頂點,且,則橢圓的離心率()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.不等式的解集為,則________14.如圖,四邊形和均為正方形,它們所在的平面互相垂直,動點在線段上,、分別為、的中點.設異面直線與所成的角為,則的最大值為____15.設P為圓上一動點,Q為直線上一動點,O為坐標原點,則的最小值為___16.已知數列滿足,若對任意恒成立,則實數的取值范圍為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某工廠為了解甲、乙兩條生產線所生產產品的質量,分別從甲、乙兩條生產線生產的產品中各隨機抽取了1000件產品,并對所抽取產品的某一質量指數進行檢測,根據檢測結果按分組,得到如圖所示的頻率分布直方圖,若該工廠認定產品的質量指數不低于6為優良級產品,產品的質量指數在內時為優等品.(1)用統計有關知識判斷甲、乙兩條生產線所生產產品的質量哪一條更好,并說明理由(同一組中的數據用該組區間的中點值作代表);(2)用分層抽樣的方法從該工廠樣品的優等品中抽取6件產品,在這6件產品中隨機抽取2件,求抽取到的2件產品都是甲生產線生產的概率.18.(12分)設數列是公比為正整數的等比數列,滿足,,設數列滿足,.(1)求數列的通項公式;(2)求證:數列是等差數列,并求數列的通項公式;(3)已知數列,設,求數列的前項和.19.(12分)在平面直角坐標系中,動點到點的距離和它到直線的距離之比為.動點的軌跡為曲線.(1)求曲線的方程,并說明曲線是什么圖形;(2)已知曲線與軸的交點分別為,點是曲線上異于的一點,直線的斜率為,直線的斜率為,求證:為定值.20.(12分)已知橢圓,焦點,A,B是上關于原點對稱的兩點,的周長的最小值為(1)求的方程;(2)直線FA與交于點M(異于點A),直線FB與交于點N(異于點B),證明:直線MN過定點21.(12分)已知函數(1)求在點處的切線方程(2)求直線與曲線圍成的封閉圖形的面積22.(10分)已知點,圓C:,l:.(1)若直線過點M,且被圓C截得的弦長為,求該直線的方程;(2)設P為已知直線l上的動點,過點P向圓C作一條切線,切點為Q,求的最小值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】利用相互獨立事件概率乘法公式和互斥事件概率加法公式直接求解【詳解】由各路口信號燈工作相互獨立,可得某人從甲地到乙地恰好遇到2次紅燈的概率:故選:B2、A【解析】求得兩圓的圓心和半徑,再根據圓心距與半徑之和半徑之差的關系,即可判斷位置關系.【詳解】對圓,其圓心,半徑;對圓,其圓心,半徑;又,故兩圓外切.故選:A.3、C【解析】求出兩直線垂直時m值判斷①;由復合命題真值表可判斷②;化簡不等式結合充分條件、必要條件定義判斷③;聯立直線與雙曲線的方程組成的方程組驗證判斷④;判定點與圓的位置關系判斷⑤作答.【詳解】若直線與直線相互垂直,則,解得或,則“”是“直線與直線相互垂直”的充分而不必要條件,①正確;命題“”為假命題,則與至少一個是假命題,不能推出一定是假命題,②不正確;,,則是的必要不充分條件,③正確;由消去y并整理得:,,即直線與雙曲線沒有公共點,④不正確;點在圓上,則直線與圓至少有一個公共點,而過點與圓相切的直線為,直線不包含,因此,直線與圓相交,有兩個交點,⑤正確,所以所有真命題的序號是①③⑤.故選:C4、A【解析】依據點差法即可求得的關系,進而即可得到雙曲線的漸近線的斜率.【詳解】設,則由,可得則,即,則則雙曲線的漸近線的斜率為故選:A5、B【解析】構造出長方體,取中點連接然后利用臨界位置分情況討論即可.【詳解】如圖,構造出長方體,取中點,連接則所有過點與成角的平面,均與以為軸的圓錐相切,過點繞且與成角,當與水平面垂直且在面的左側(在長方體的外面)時,與面所成角為75°(與面成45°,與成30°),過點繞旋轉,轉一周,90°顯然最大,到了另一個邊界(在面與之間)為15度,即與面所成角從75°→90°→15°→90°→75°變化,此過程中,有兩次角為30
,綜上,這樣的平面α有2個,故選:B.6、A【解析】①由正方形的性質,可以延伸正方形,再利用兩條平行線確定一個平面即可;②一組鄰邊與對角面夾角相等,在平面內繞P轉動,可以得到二條直線與a、b的夾角都等于.【詳解】如下圖所示,在側面正方形和再延伸一個正方形和,則平面和在同一個平面內,所以過點P,有且只有一條直線l,即與a、b相交,故①為真命題;取中點N,連PN,由于a、b為異面直線,a、b的夾角等于與b的夾角.由于平面,平面,,所以平面,所以與與b的夾角都為.又因為平面,所以與與b的夾角都為,而,所以過點P,在平面內存在一條直線,使得與與b的夾角都為,同理可得,過點P,在平面內存在一條直線,使得與與的夾角都為;故②為真命題.故選:A7、D【解析】公切線條數與圓與圓的位置關系是相關的,所以第一步需要判斷圓與圓的位置關系.【詳解】圓的圓心坐標為,半徑為3;圓的圓心坐標為,半徑為1,所以兩圓的心心距為,所以兩圓相離,公切線有4條.故選:D.8、B【解析】由題可得,然后結合條件可得,即求.【詳解】設于點,準線交軸于點G,則,又,∴,又于點且,∴BE∥AD,∴,即,∴,∴等于.故選:B.9、D【解析】直接求導,代入計算即可.【詳解】,故.故選:D.10、A【解析】根據是等腰直角三角形,再表示出的長,利用三角形的幾何性質即可求得答案.【詳解】線段的中點在y軸上,設的中點為M,因為O為的中點,所以,而,則,為等腰三角形,故,由,得,又為等腰直角三角形,故,即,解得,即,故選:A.11、D【解析】根據空間向量的加法、減法和數乘運算可得結果.【詳解】.故選:D12、D【解析】依題意,不妨設點A的坐標為,在中,由余弦定理得,再根據離心率公式計算即可.【詳解】設橢圓的焦距為,則橢圓的左焦點的坐標為,右焦點的坐標為,依題意,不妨設點A的坐標為,在中,由余弦定理得:,,,,解得.故選:D.【點睛】本題考查橢圓幾何性質,在中,利用余弦定理求得是關鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由一元二次方程與一元二次不等式之間的關系可知,方程的兩根是,所以因此.考點:一元二次方程與一元二次不等式之間的關系.14、【解析】如圖所示,建立空間直角坐標系,設,,,,,由向量法可得,令,,,利用導數研究函數的單調性即可求得的最大值,從而可得答案【詳解】解:由題意,根據已知條件,直線AB,AD,AQ兩兩互相垂直,所以建立如圖所示空間直角坐標系不妨設,則,0,,,0,,,1,,設,,,,,,,,,,,令,,則,函數在上單調遞減,時,函數取得最大值,的最大值為故答案為:15、4【解析】取點,可得,從而,,從而可求解【詳解】解:由圓,得圓心,半徑,取點A(3,0),則,又,∴,∴,∴,當且僅當直線時取等號故答案為:16、【解析】根據給定條件求出,構造新數列并借助單調性求解作答.【詳解】在數列中,,當,時,,則有,而滿足上式,因此,,,顯然數列是遞增數列,且,,又對任意恒成立,則,所以實數的取值范圍為.故答案為:【點睛】思路點睛:給定數列的前項和或者前項積,求通項時,先要按和分段求,然后看時是否滿足時的表達式,若不滿足,就必須分段表達.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)甲更好,詳細見解析(2)【解析】(1)根據頻率分布直方圖計算甲、乙兩條生產線所生產產品的質量指數的平均數,比較大小即可得答案;(2)由題意可知,甲、乙生產線的樣品中優等品件數,利用分層抽樣可得從甲生產線的樣品中抽取的優等品有件件,記為,從乙生產線的樣品中抽取的優等品有件,記為;列出抽取到的2件產品的所有基本事件,根據古典概型計算即可.【小問1詳解】解:甲生產線所生產產品的質量指數的平均數為:=3×0.05×2+5×0.15×2+7×0.2×2+9×0.1×2=6.4;乙生產線所生產產品的質量指數的平均數為:=3×0.15×2+5×0.1×2+7×0.2×2+9×0.05×2=5.6因為,所以甲生產線生產產品質量的平均水平高于乙生產線生產產品質量的平均水平,故甲生產線所生產產品的質量更好.【小問2詳解】由題意可知,甲生產線的樣品中優等品有件,乙生產線的樣品中優等品有件,從甲生產線的樣品中抽取的優等品有件件,記為,從乙生產線的樣品中抽取的優等品有件,記為;從這6件產品中隨機抽取2件的情況有:(a,b),(a,c),(a,d),(a,E),(a,F),(b,c),(b,d),(b,E),(b,F),(c,d),(c,E),(c,F),(d,E),(d,F),(E,F),共15種;其中符合條件的情況有:(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共6種.故抽取到的2件產品都是甲生產線生產的概率為:18、(1)(2)證明見解析,(3)【解析】(1)根據等比數列列出方程組求解首項、公比即可得解;(2)化簡后得,可證明數列是等差數列,即可得出,再求出即可;(3)利用錯位相減法求出數列的和.【小問1詳解】設公比為,由條件可知,,所以;【小問2詳解】,又,所以,所以數列是以為首項,為公差等差數列,所以,所以.【小問3詳解】,,兩式相減可得,,.19、(1),曲線是以為焦點的橢圓;(2)證明見解析.【解析】(1)由題可得,即求;(2)利用斜率公式及橢圓方程計算即得.【小問1詳解】設點坐標為,根據題意,得,左右同時平方,得,整理得,,即,所以曲線的方程是,曲線是以為焦點的橢圓.【小問2詳解】由題意得,設的坐標是,因為點在曲線上,所以,因為,所以,所以為定值.20、(1)(2)證明見解析【解析】(1)設橢圓的左焦點為,根據橢圓的對稱性可得,則三角形的周長為,再設根據二次函數的性質得到,即可求出的周長的最小值為,從而得到,再根據,即可求出、,從而求出橢圓方程;(2)設直線MN的方程,,,,聯立直線與橢圓方程,消元列出韋達定理,再設直線的方程、,直線的方程、,聯立直線方程,消元列出韋達定理,即可表示,即可得到,整理得,再代入,,即可得到,從而求出,即可得解;【小問1詳解】設橢圓的左焦點為,則由對稱性,,所以的周長為設,則,當A,B是橢圓的上下頂點時,的周長取得最小,所以,即,又橢圓焦點,所以,所以,所以,解得,,所以橢圓的方程為.【小問2詳解】解:當A,B為橢圓左右頂點時,直線MN與x軸重合;當A,B為橢圓上下頂點時,可得直線MN的方程為;設直線MN的方程,,,,由得,,,,設直線的方程,其中,,,由得,,,,設直線的方程,其中,,由得,,,所以,所以,所以,則,即,代入,,得,整理得,又所以,直線MN的方程為,綜上直線MN過定點21、(1)(2)2【解析】(1)首先求出函數的導函數,即可求出切線的斜率,再利用點斜式求出切線方程;(2)首先求出兩函數的交點坐標,再利用定積分及微積分基本定理計
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論