




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣西陸川縣中學2023-2024學年高二數學第一學期期末學業質量監測模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列結論中正確的個數為()①,;②;③A.0 B.1C.2 D.32.設,直線,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件3.已知,且直線始終平分圓的周長,則的最小值是()A.2 B.C.6 D.164.已知拋物線,則其焦點到準線的距離為()A. B.C.1 D.45.將上各點的縱坐標不變,橫坐標變為原來的2倍,得到曲線C,若直線l與曲線C交于A,B兩點,且AB中點坐標為M(1,),那么直線l的方程為()A. B.C. D.6.函數f(x)=xex的單調增區間為()A.(-∞,-1) B.(-∞,e)C.(e,+∞) D.(-1,+∞)7.古希臘數學家阿基米德利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸長與短半軸長的乘積,已知橢圓的面積為,、分別是的兩個焦點,過的直線交于、兩點,若的周長為,則的離心率為()A. B.C. D.8.已知△的頂點B,C在橢圓上,頂點A是橢圓的一個焦點,且橢圓的另一個焦點在BC邊上,則△的周長是()A. B.C.8 D.169.已知函數的導函數為,且滿足,則()A. B.C. D.10.設,則“”是“直線與直線平行”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件11.過點且與拋物線只有一個公共點的直線有()A.1條 B.2條C.3條 D.0條12.過點且與原點距離最大的直線方程是()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為F,若拋物線上一點P到x軸的距離為2,則|PF|的值為___________.14.若函數,則在點處切線的斜率為______15.如圖,E,F分別是三棱錐的棱AD,BC的中點,,,,則異面直線AB與EF所成的角為______.16.在學習《曲線與方程》的課堂上,老師給出兩個曲線方程;,老師問同學們:你想到了什么?能得到哪些結論?下面是四位同學的回答:甲:曲線關于對稱;乙:曲線關于原點對稱;丙:曲線與坐標軸在第一象限圍成的圖形面積;丁:曲線與坐標軸在第一象限圍成的圖形面積;四位同學回答正確的有______(選填“甲、乙、丙、丁”)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓)過點A(0,),且與雙曲線有相同的焦點(1)求橢圓C的方程;(2)設M,N是橢圓C上異于A的兩點,且滿足,試判斷直線MN是否過定點,并說明理由18.(12分)已知為各項均為正數的等比數列,且,(1)求數列的通項公式;(2)令,求數列前n項和19.(12分)紅鈴蟲是棉花的主要害蟲之一,也侵害木棉、錦葵等植物.為了防治蟲害,從根源上抑制害蟲數量.現研究紅鈴蟲的產卵數和溫度的關系,收集到7組溫度和產卵數的觀測數據于表Ⅰ中.根據繪制的散點圖決定從回歸模型①與回歸模型②中選擇一個來進行擬合表Ⅰ溫度x/℃20222527293135產卵數y/個711212465114325(1)請借助表Ⅱ中的數據,求出回歸模型①的方程:表Ⅱ(注:表中)18956725.271627810611.06304041.86825.09(2)類似的,可以得到回歸模型②的方程為,試求兩種模型下溫度為時的殘差;(3)若求得回歸模型①的相關指數,回歸模型②的相關指數,請結合(2)說明哪個模型的擬合效果更好參考數據:.附:回歸方程中,相關指數.20.(12分)已知圓(1)若一直線被圓C所截得的弦的中點為,求該直線的方程;(2)設直線與圓C交于A,B兩點,把的面積S表示為m的函數,并求S的最大值21.(12分)如圖,在幾何體中,底面是邊長為2的正三角形,平面,,且是的中點.(1)求證:平面;(2)求二面角的余弦值.22.(10分)已知橢圓的左右焦點分別為,,點在橢圓上,與軸垂直,且(1)求橢圓的方程;(2)若點在橢圓上,且,求的面積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】構造函數利用導數說明函數的單調性,即可判斷大小,從而得解;【詳解】解:令,,則,所以在上單調遞增,所以,即,即,,故①正確;令,,則,所以當時,,當時,,所以在上單調遞減,在上單調遞增,所以,即恒成立,所以,故②正確;令,,當時,當時,所以在上單調遞減,在上單調遞增,所以,即,所以,當且僅當時取等號,故③錯誤;故選:C2、A【解析】由可求得實數的值,再利用充分條件、必要條件的定義判斷可得出結論.【詳解】若,則,解得或,因此,“”是“”的充分不必要條件.故選:A.3、B【解析】由已知直線過圓心得,再用均值不等式即可.【詳解】由已知直線過圓心得:,,當且僅當時取等.故選:B.4、B【解析】化簡拋物線的方程為,求得,即為焦點到準線的距離.【詳解】由題意,拋物線,即,解得,即焦點到準線的距離是故選:B5、A【解析】先根據題意求出曲線C的方程,然后利用點差法求出直線l的斜率,從而可求出直線方程【詳解】設點為曲線C上任一點,其在上對應在的點為,則,得,所以,所以曲線C的方程為,設,則,兩方程相減整理得,因為AB中點坐標為M(1,),所以,即,所以,所以,所以直線l的方程為,即,故選:A6、D【解析】求出,令可得答案.【詳解】由已知得,令,得,故函數f(x)=xex的單調增區間為(-1,+∞).故選:D.7、A【解析】本題首先可根據題意得出,然后根據的周長為得出,最后根據求出的值,即可求出的離心率.【詳解】因為橢圓的面積為,所以長半軸長與短半軸長的乘積,因為的周長為,所以根據橢圓的定義易知,,,,則的離心率,故選:A.8、D【解析】根據橢圓定義求解【詳解】由橢圓定義得△的周長是,故選:D.9、C【解析】求出導數后,把x=e代入,即可求解.【詳解】因為,所以,解得故選:C10、A【解析】根據兩直線平行的充要條件求出a的值,然后可判斷.【詳解】當時,,所以兩直線平行;若兩直線平行,則且,解得或,所以,“”是“直線與直線平行”的充分不必要條件.故選:A11、B【解析】過的直線的斜率存在和不存在兩種情況分別討論即可得出答案.【詳解】易知過點,且斜率不存在的直線為,滿足與拋物線只有一個公共點.當直線的斜率存在時,設直線方程為,與聯立得,當時,方程有一個解,即直線與擾物線只有一個公共點.故滿足題意的直線有2條.故選:B12、A【解析】過點且與原點O距離最遠的直線垂直于直線,再由點斜式求解即可【詳解】過點且與原點O距離最遠的直垂直于直線,,∴過點且與原點O距離最遠的直線的斜率為,∴過點且與原點O距離最遠的直線方程為:,即.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、3【解析】先求出拋物線的焦點坐標和準線方程,再利用拋物線的定義可求得答案【詳解】拋物線的焦點為,準線為,因為拋物線上一點P到x軸的距離為2,所以由拋物線的定義可得,故答案為:314、【解析】根據條件求出,,再求即答案.【詳解】∵,∴,則和,得,,∴,,∴,所以在點處切線的斜率為.故答案為:15、【解析】取的中點,連結,由分別為的中點,可得(或其補角)為異面直線AB與EF所成的角,在求解即可.【詳解】取的中點,連結由分別為的中點,則所以(或其補角)為異面直線AB與EF所成的角由分別是的中點,則,又在中,,則所以,又,所以在直角中,故答案為:16、甲、乙、丙、丁【解析】結合對稱性判斷甲、乙的正確性;通過對比和與坐標軸在第一象限圍成的圖形面積來判斷丙丁的正確性.【詳解】對于甲:交換方程中和的位置得,所以曲線關于對稱,甲回答正確.對于乙:和兩個點都滿足方程,所以曲線關于原點對稱,乙回答正確.對于丙:直線與坐標軸在第一象限圍成的圖形面積為,,,在第一象限,直線與曲線都滿足,,,所以在第一象限,直線的圖象在曲線的圖象上方,所以,丙回答正確.對于丁:圓與坐標軸在第一象限圍成的圖形面積為,在第一象限,曲線與曲線都滿足,,,,所以在第一象限,曲線的圖象在曲線的圖象下方,所以,丁回答正確.故答案為:甲、乙、丙、丁三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)直線過定點;理由見解析【解析】(1)根據題意可求得,進而求得橢圓方程;(2)考慮直線斜率是否存在,設直線方程并聯立橢圓方程,得到根與系數的關系式,然后利用,將根與系數的關系式代入化簡得到,結合直線方程,化簡可得結論.【小問1詳解】依題意,,所以,故橢圓方程為:【小問2詳解】當直線MN的斜率不存在時,設M(),N(,),則,,此時M,N重合,不符合題意;當直線MN的斜率存在時,設MN的方程為:,M(,),N(),與橢圓方程聯立可得:,即,∴,即,∴,∴,∴,當時,,直線MN:,即,令,則,∴直線過定點【點睛】本題考查了橢圓方程的求法以及直線和橢圓相交時過定點的問題,解答時要注意解題思路的順暢,解答的難點在于運算量較大且復雜,需要十分細心.18、(1)(2)【解析】(1)利用基本量法,求出首項和公比,即可求解.(2)利用錯位相減法,即可求解.【小問1詳解】設等比數列公比為【小問2詳解】19、(1)(或)(2)模型①:1.54;模型②:65.54(3)模型①【解析】(1)利用兩邊取自然對數,利用表中的數據即可求解;(2)分別計算模型①、②在時殘差;(3)根據相關指數的大小判斷摸型①、②的殘差平方和,再得出那個模型的擬合效果更好.【小問1詳解】由,得,令,得,由表Ⅱ數據可得,,,所以,所以回歸方程為(或).【小問2詳解】由題意可知,模型①在時殘差為,模型②在時殘差為.【小問3詳解】因為,即模型①的相關指數大于模型②的相關指數,由相關指數公式知,模型①的殘差平方和小于模型②的殘差平方和,因此模型①得到的數據更接近真實數據,所以模型①的擬合效果更好.20、(1)(2),最大值為.【解析】(1)利用垂徑定理求出斜率,即可求出直線的方程;(2)利用幾何法表示出弦長與d的關系,利用基本不等式求出的面積S的最大值【小問1詳解】圓化為標準方程為:.則.設所求的直線為m.由圓的幾何性質可知:,所以,所以所求的直線為:,即.【小問2詳解】設圓心C到直線l的距離為d,則,且,所以因為直線與圓C交于A,B兩點,所以,解得:且.而的面積:因為所以(其中時等號成立).所以S的最大值為.21、(1)證明見解析(2)【解析】(1)取的中點F,連接EF,,由四邊形是平行四邊形即可求解;(2)采用建系法,以為軸,為軸,垂直底面方向為軸,求出對應點坐標,結合二面角夾角余弦公式即可求解.【小問1詳解】取的中點F,連接EF,,∵,∴,且,∴,∴四邊形是平行四邊形,∴,又平面,平面,∴平面;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀行承兌轉讓協議書
- 轉讓個人林地協議書
- 酒吧玩家股東協議書
- 采暖調試運行協議書
- 冷倉庫租賃合同協議書
- 高空拋物調解協議書
- 購買鏈條技術協議書
- 青年創作合作協議書
- 辦公室工位出租協議書
- 預售資金監管協議書
- 肩關節鏡下肩袖修補術的護理查房ppt
- 回旋鏢運動軌跡的模擬
- 《康復醫學》PPT課件(PPT 105頁)
- 心理學在船舶安全管理中的應用
- 實驗室生物安全委員會及其工作職責
- JJF(鄂) 90-2021 電子輥道秤校準規范(高清版)
- 超星爾雅學習通《今天的日本》章節測試含答案
- 光學零件工藝學
- 餐飲量化分級
- 三一重工SCC2000履帶吊履帶式起重機技術參數
- 浙工大 《大學英語》專升本 復習試卷 及答案
評論
0/150
提交評論