




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
河南省信陽市高級中學(xué)2024屆高二上數(shù)學(xué)期末達(dá)標(biāo)檢測模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.點(diǎn)到直線的距離是()A. B.C. D.2.如圖,在三棱錐中,平面ABC,,,,則點(diǎn)A到平面PBC的距離為()A.1 B.C. D.3.已知函數(shù)的導(dǎo)函數(shù)的圖像如圖所示,則下列說法正確的是()A.是函數(shù)的極大值點(diǎn)B.函數(shù)在區(qū)間上單調(diào)遞增C.是函數(shù)的最小值點(diǎn)D.曲線在處切線的斜率小于零4.已知等比數(shù)列中,,則這個(gè)數(shù)列的公比是()A.2 B.4C.8 D.165.為了了解1000名學(xué)生的學(xué)習(xí)情況,采用系統(tǒng)抽樣的方法,從中抽取容量為50的樣本,則分段的間隔為()A.20 B.25C.40 D.506.若直線:與直線:平行,則a的值是()A.1 B.C.或6 D.或77.將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù),則點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為()A. B.C. D.8.某海關(guān)緝私艇在執(zhí)行巡邏任務(wù)時(shí),發(fā)現(xiàn)其所在位置正西方向20nmile處有一走私船只,正以30nmile/h的速度向北偏東30°的方向逃竄,若緝私艇突然發(fā)生機(jī)械故障,20min后才以的速度開始追趕,則在走私船只不改變航向和速度的情況下,緝私艇追上走私船只的最短時(shí)間為()A.1h B.C. D.9.已知函數(shù)f(x)的圖象如圖所示,則導(dǎo)函數(shù)f(x)的圖象可能是()A. B.C. D.10.過拋物線的焦點(diǎn)的直線交拋物線于兩點(diǎn),點(diǎn)是原點(diǎn),若;則的面積為()A. B.C. D.11.瑞士數(shù)學(xué)家歐拉1765年在其所著的《三角形的幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知的頂點(diǎn),,其歐拉線方程為,則頂點(diǎn)的坐標(biāo)可以是()A. B.C. D.12.某綜合實(shí)踐小組設(shè)計(jì)了一個(gè)“雙曲線型花瓶”.他們的設(shè)計(jì)思路是將某雙曲線的一部分(圖1中A,C之間的曲線)繞其虛軸所在直線l旋轉(zhuǎn)一周,得到花瓶的側(cè)面,花瓶底部是平整的圓面,如圖2.該小組給出了圖1中的相關(guān)數(shù)據(jù):,,,,,其中B是雙曲線的一個(gè)頂點(diǎn).小組中甲、乙、丙、丁四位同學(xué)分別用不同的方法估算了該花瓶的容積(忽略瓶壁和底部的厚度),結(jié)果如下表所示學(xué)生甲乙丙丁估算結(jié)果()其中估算結(jié)果最接近花瓶的容積的同學(xué)是()(參考公式:,,)A.甲 B.乙C.丙 D.丁二、填空題:本題共4小題,每小題5分,共20分。13.已知是橢圓的兩個(gè)焦點(diǎn),分別是該橢圓的左頂點(diǎn)和上頂點(diǎn),點(diǎn)在線段上,則的最小值為__________.14.從甲、乙、丙、丁4位同學(xué)中,選出2位同學(xué)分別擔(dān)任正、副班長的選法數(shù)可以用表示為____________.15.?dāng)?shù)列的前n項(xiàng)和滿足:,則________16.已知函數(shù),,則曲線在處的切線方程為___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐中,底面ABCD為直角梯形,,,平面底面ABCD,Q為AD的中點(diǎn),M是棱PC的中點(diǎn),,,(1)求證:;(2)求直線PB與平面MQB所成角的正弦值18.(12分)已知數(shù)列為等差數(shù)列,,數(shù)列滿足,且(1)求的通項(xiàng)公式;(2)設(shè),記數(shù)列的前項(xiàng)和為,求證:19.(12分)設(shè)函數(shù)(1)求在處的切線方程;(2)求在上的最大值與最小值20.(12分)已知橢圓的離心率為,點(diǎn)在橢圓C上.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)已知直線與橢圓C交于P,Q兩點(diǎn),點(diǎn)M是線段PQ的中點(diǎn),直線過點(diǎn)M,且與直線l垂直.記直線與y軸的交點(diǎn)為N,求的取值范圍.21.(12分)已知函數(shù).(1)求的單調(diào)區(qū)間;(2)討論的零點(diǎn)個(gè)數(shù).22.(10分)已知拋物線C:上一點(diǎn)到焦點(diǎn)F的距離為2(1)求實(shí)數(shù)p的值;(2)若直線l過C的焦點(diǎn),與拋物線交于A,B兩點(diǎn),且,求直線l的方程
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】直接使用點(diǎn)到直線距離公式代入即可.【詳解】由點(diǎn)到直線距離公式得故選:B2、A【解析】設(shè)點(diǎn)A到平面PBC的距離為,根據(jù)等體積法求解即可.【詳解】因?yàn)槠矫鍭BC,所以,因?yàn)椋杂郑?所以,設(shè)點(diǎn)A到平面PBC的距離為,則,即,,故選:A3、B【解析】根據(jù)導(dǎo)函數(shù)的圖象,得到函數(shù)的單調(diào)區(qū)間與極值點(diǎn),即可判斷;【詳解】解:由導(dǎo)函數(shù)的圖象可知,當(dāng)時(shí),當(dāng)時(shí),當(dāng)時(shí),當(dāng)或時(shí),則在上單調(diào)遞增,在上單調(diào)遞減,所以函數(shù)在處取得極小值即最小值,所以是函數(shù)的極小值點(diǎn)與最小值點(diǎn),因?yàn)椋郧€在處切線的斜率大于零,故選:B4、A【解析】直接利用公式計(jì)算即可.【詳解】設(shè)等比數(shù)列的公比為,由已知,,所以,解得.故選:A5、A【解析】根據(jù)系統(tǒng)抽樣定義可求得結(jié)果【詳解】分段的間隔為故選:A6、D【解析】根據(jù)直線平行的充要條件即可求出【詳解】依題意可知,顯然,所以由可得,,解得或7故選:D7、B【解析】基本事件總數(shù),再利用列舉法求出點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件的個(gè)數(shù),由此能求出點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率【詳解】解:將一顆骰子先后拋擲2次,觀察向上的點(diǎn)數(shù)之和,基本事件總數(shù),點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)包含的基本事件有:,,,,,,,,共8個(gè),則點(diǎn)數(shù)之和是4的倍數(shù)但不是3的倍數(shù)的概率為故選:B8、A【解析】設(shè)小時(shí)后,相遇地點(diǎn)為,在三角形中根據(jù)題目條件得出,再在三角形中,由勾股定理即可求出.【詳解】以緝私艇為原點(diǎn),建立如下圖所示的直角坐標(biāo)系.圖中走私船所在位置為,設(shè)緝私艇追上走私船的最短時(shí)間為,相遇地點(diǎn)為.則,走私船以的速度向北偏東30°的方向逃竄,60°.因?yàn)?0min后緝私艇才以的速度開始追趕走私船,所以20min走私船行走了,到達(dá).在三角形中,由余弦定理知:,則,所以.在三角形中,,,有:,化簡得:,則.緝私艇追上走私船只的最短時(shí)間為1h.故選:A.點(diǎn)睛】9、D【解析】根據(jù)導(dǎo)函數(shù)正負(fù)與原函數(shù)單調(diào)性關(guān)系可作答【詳解】原函數(shù)在上先減后增,再減再增,對應(yīng)到導(dǎo)函數(shù)先負(fù)再正,再負(fù)再正,且原函數(shù)在處與軸相切,故可知,導(dǎo)函數(shù)圖象為D故選:D10、C【解析】拋物線焦點(diǎn)為,準(zhǔn)線方程為,由得或所以,故答案為C考點(diǎn):1、拋物線的定義;2、直線與拋物線的位置關(guān)系11、C【解析】設(shè)出點(diǎn)C坐標(biāo),求出的重心并代入歐拉線方程,驗(yàn)證并排除部分選項(xiàng),余下選項(xiàng)再由外心、垂心驗(yàn)證判斷作答.【詳解】設(shè)頂點(diǎn)的坐標(biāo)為,則的重心坐標(biāo)為,依題意,,整理得:,對于A,當(dāng)時(shí),,不滿足題意,排除A;對于D,當(dāng)時(shí),,不滿足題意,排除D;對于B,當(dāng)時(shí),,對于C,當(dāng)時(shí),,直線AB的斜率,線段AB中點(diǎn),線段AB中垂線方程:,即,由解得:,于是得的外心,若點(diǎn),則直線BC的斜率,線段BC中點(diǎn),該點(diǎn)與點(diǎn)M確定直線斜率為,顯然,即點(diǎn)M不在線段BC的中垂線上,不滿足題意,排除B;若點(diǎn),則直線BC的斜率,線段BC中點(diǎn),線段BC中垂線方程為:,即,由解得,即點(diǎn)為的外心,并且在直線上,邊AB上的高所在直線:,即,邊BC上的高所在直線:,即,由解得:,則的垂心,此時(shí)有,即的垂心在直線上,選項(xiàng)C滿足題意.故選:C【點(diǎn)睛】結(jié)論點(diǎn)睛:的三頂點(diǎn),則的重心為.12、D【解析】根據(jù)幾何體可分割為圓柱和曲邊圓錐,利用圓柱和圓錐的體積公式對幾何體的體積進(jìn)行估計(jì)即可.【詳解】可將幾何體看作一個(gè)以為半徑,高為的圓柱,再加上兩個(gè)曲邊圓錐,其中底面半徑分別為,,高分別為,,,,所以花瓶的容積,故最接近的是丁同學(xué)的估算,故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題可設(shè),則,然后利用數(shù)量積坐標(biāo)表示及二次函數(shù)的性質(zhì)即得.【詳解】由題可得,,設(shè),因?yàn)辄c(diǎn)P在線段AB上,所以,∴,∴當(dāng)時(shí),的最小值為.故答案為:.14、【解析】由題意知:從4為同學(xué)中選出2位進(jìn)行排列,即可寫出表示方式.【詳解】1、從4位同學(xué)選出2位同學(xué),2、把所選出的2位同學(xué)任意安排為正、副班長,∴選法數(shù)為.故答案為:.15、【解析】利用“當(dāng)時(shí),;當(dāng)時(shí),"即可得出.【詳解】當(dāng)時(shí),當(dāng)時(shí),,不適合上式,數(shù)列的通項(xiàng)公式.故答案為:.16、【解析】根據(jù)導(dǎo)數(shù)的幾何意義求得在點(diǎn)處的切線方程.【詳解】由,求導(dǎo),知,又,則函數(shù)在點(diǎn)處的切線方程為.故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據(jù)等腰三角形可得,再由面面垂直的性質(zhì)得出線面垂直,即可求證;(2)建立空間直角坐標(biāo)系,利用向量法求線面角.【小問1詳解】因?yàn)镼為AD的中點(diǎn),,所以,又因?yàn)槠矫娴酌鍭BCD,平面底面,平面PAD,所以平面ABCD,又平面ABCD,所以【小問2詳解】由題可知QA、QB、QP兩兩互相垂直,以QA為x軸、QB為y軸、QP為z軸建立空間坐標(biāo)系,如圖,根據(jù)題意,則,,,,,由M是棱PC的中點(diǎn)可知,,設(shè)平面MQB的法向量為,,,則,即令,則,,故平面MQB的一個(gè)法向量為,所以,所以直線PB與平面MQB所成角的正弦值為18、(1);(2)證明見解析.【解析】(1)求出的值,可求得等差數(shù)列的公差,進(jìn)而可求得數(shù)列的通項(xiàng)公式,再由前項(xiàng)和與通項(xiàng)的關(guān)系可求得的表達(dá)式,可求得,然后對是否滿足在時(shí)的表達(dá)式進(jìn)行檢驗(yàn),綜合可得出數(shù)列的通項(xiàng)公式;(2)求得,利用裂項(xiàng)求和法可求得的表達(dá)式,利用不等式的性質(zhì)和數(shù)列的單調(diào)性可證得所證不等式成立.【小問1詳解】解:因?yàn)椋裕驗(yàn)椋裕O(shè)數(shù)列公差為,則,所以,當(dāng)時(shí),由,可得,所以,所以,因?yàn)闈M足,所以,對任意的,【小問2詳解】證明:因?yàn)椋裕驗(yàn)椋裕驗(yàn)椋裕蕯?shù)列單調(diào)遞增,當(dāng)時(shí),,所以19、(1)(2),【解析】(1)對函數(shù)求導(dǎo),然后求出,,運(yùn)用點(diǎn)斜式即可求出切線方程;(2)利用導(dǎo)數(shù)研究出函數(shù)在區(qū)間的單調(diào)性,即可求出函數(shù)在區(qū)間上的最大值與最小值【小問1詳解】,,,所以在點(diǎn)處的切線方程為,即.【小問2詳解】,因?yàn)椋耘c同號,令則,由,得,此時(shí)為減函數(shù),由,得,此時(shí)為增函數(shù),則,故,在單調(diào)遞增,所以,20、(1)(2)【解析】(1)求出后可得橢圓的方程.(2)聯(lián)立直線的方程和橢圓方程,消去后利用韋達(dá)定理可用表示,利用換元法和二次函數(shù)的性質(zhì)可求的取值范圍.小問1詳解】由題意可得,解得,.故橢圓C的標(biāo)準(zhǔn)方程為.【小問2詳解】設(shè),,.聯(lián)立,整理得,則,解得,從而,.因?yàn)镸是線段PQ的中點(diǎn),所以,則,故.直線的方程為,即.令,得,則,所以.設(shè),則,故.因?yàn)椋裕?21、(1)單調(diào)遞增區(qū)間是和,單調(diào)遞減區(qū)間是(2)時(shí),有1個(gè)零點(diǎn);或時(shí),有2個(gè)零點(diǎn);時(shí),有3個(gè)零點(diǎn).【解析】(1)求解函數(shù)的導(dǎo)數(shù),再運(yùn)用導(dǎo)數(shù)求解函數(shù)的單調(diào)區(qū)間即可;(2)根據(jù)導(dǎo)數(shù)分析原函數(shù)的極值,進(jìn)而討論其零點(diǎn)個(gè)數(shù).【詳解】(1)因?yàn)椋杂桑没颍挥桑?故單調(diào)遞增區(qū)間是和,單調(diào)遞減區(qū)間是.(2)由(1)可知的極小值是,極大值是.①當(dāng)時(shí),方程有且僅有1個(gè)實(shí)根,即有1個(gè)零點(diǎn);②當(dāng)時(shí),方程有2個(gè)不同實(shí)根,即有2個(gè)零點(diǎn);③當(dāng)時(shí),方程有3個(gè)不同實(shí)根,即有3個(gè)零點(diǎn);④當(dāng)時(shí),方程
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 銀行承兌轉(zhuǎn)讓協(xié)議書
- 轉(zhuǎn)讓個(gè)人林地協(xié)議書
- 酒吧玩家股東協(xié)議書
- 采暖調(diào)試運(yùn)行協(xié)議書
- 冷倉庫租賃合同協(xié)議書
- 高空拋物調(diào)解協(xié)議書
- 購買鏈條技術(shù)協(xié)議書
- 青年創(chuàng)作合作協(xié)議書
- 辦公室工位出租協(xié)議書
- 預(yù)售資金監(jiān)管協(xié)議書
- 全產(chǎn)業(yè)鏈運(yùn)營模式
- 《煤礦安全規(guī)程》培訓(xùn)考試題答案
- 建筑架子工(普通腳手架)操作技能考核標(biāo)準(zhǔn)
- 山推SD16結(jié)構(gòu)原理課件
- 病假醫(yī)療期申請單(新修訂)
- 鉆孔樁鉆孔記錄表(旋挖鉆)
- 660MW機(jī)組金屬監(jiān)督項(xiàng)目
- JBK-698CX淬火機(jī)數(shù)控系統(tǒng)
- 心理學(xué)在船舶安全管理中的應(yīng)用
- JJF(鄂) 90-2021 電子輥道秤校準(zhǔn)規(guī)范(高清版)
- 超星爾雅學(xué)習(xí)通《今天的日本》章節(jié)測試含答案
評論
0/150
提交評論