河南省商丘名校2023年高二上數學期末達標檢測模擬試題含解析_第1頁
河南省商丘名校2023年高二上數學期末達標檢測模擬試題含解析_第2頁
河南省商丘名校2023年高二上數學期末達標檢測模擬試題含解析_第3頁
河南省商丘名校2023年高二上數學期末達標檢測模擬試題含解析_第4頁
河南省商丘名校2023年高二上數學期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河南省商丘名校2023年高二上數學期末達標檢測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖是函數的導函數的圖象,下列說法正確的是()A.函數在上是增函數B.函數在上是減函數C.是函數的極小值點D.是函數的極大值點2.對于函數,下列說法正確的是()A.的單調減區間為B.設,若對,使得成立,則C.當時,D.若方程有4個不等的實根,則3.已知一個乒乓球從米高的高度自由落下,每次落下后反彈的高度是原來高度的倍,則當它第8次著地時,經過的總路程是()A. B.C. D.4.設橢圓C:的右焦點為F,過原點O的動直線l與橢圓C交于A,B兩點,那么的周長的取值范圍為()A. B.C. D.5.氣象臺正南方向的一臺風中心,正向北偏東30°方向移動,移動速度為,距臺風中心以內的地區都將受到影響,若臺風中心的這種移動趨勢不變,氣象臺所在地受到臺風影響持續時間大約是()A. B.C. D.6.已知等比數列的公比為正數,且,,則()A.4 B.2C.1 D.7.已知p:,q:,那么p是q的()A.充要條件 B.必要不充分條件C.充分不必要條件 D.既不充分也不必要條件8.已知,且,則的最大值為()A. B.C. D.9.散點圖上有5組數據:據收集到的數據可知,由最小二乘法求得回歸直線方程為,則的值為()A.54.2 B.87.64C.271 D.438.210.拋擲兩枚硬幣,若記出現“兩個正面”“兩個反面”“一正一反”的概率分別為,,,則下列判斷中錯誤的是().A. B.C. D.11.已知,,,則下列判斷正確的是()A. B.C. D.12.已知點,點關于原點的對稱點為,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓:和圓:,動圓M同時與圓及圓外切,則動圓的圓心M的軌跡方程為______.14.在某項測量中,測量結果ξ服從正態分布(),若ξ在內取值的概率為0.4,則ξ在內取值的概率為______15.如圖的一系列正方形圖案稱為謝爾賓斯基地毯,圖案的做法是:把一個正方形分成9個全等的小正方形,對中間的一個小正方形進行著色得到第1個圖案(圖1);在第1個圖案中對沒有著色的小正方形再重復以上做法得到第2個圖案(圖2);以此類推,每進行一次操作,就得到一個新的正方形圖案,設原正方形的邊長為1,記第n個圖案中所有著色的正方形的面積之和為,則數列的通項公式______16.若函數在區間內存在最大值,則實數的取值范圍是____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)拋物線的焦點為F,過點F的直線交拋物線于A,B兩點(1)若,求直線AB的斜率;(2)設點M在線段AB上運動,原點O關于點M的對稱點為C,求四邊形OACB面積的最小值18.(12分)已如橢圓C:=1(a>b>0)的有頂點為M(2,0),且離心率e=,點A,B是橢圓C上異于點M的不同的兩點(Ⅰ)求橢圓C的方程;(Ⅱ)設直線MA與直線MB的斜率分別為k1,k2,若k1?k2=,證明:直線AB一定過定點19.(12分)在平面直角坐標系中,△的三個頂點分別是點.(1)求△的外接圓O的標準方程;(2)過點作直線平行于直線,判斷直線與圓O的位置關系,并說明理由.20.(12分)設函數.(1)若在點處的切線為,求a,b的值;(2)求的單調區間.21.(12分)已知圓C經過坐標原點O和點(4,0),且圓心在x軸上(1)求圓C的方程;(2)已知直線l:與圓C相交于A、B兩點,求所得弦長值22.(10分)設數列是公比為q的等比數列,其前n項和為(1)若,,求數列的前n項和;(2)若,,成等差數列,求q的值并證明:存在互不相同的正整數m,n,p,使得,,成等差數列;(3)若存在正整數,使得數列,,…,在刪去以后按原來的順序所得到的數列是等差數列,求所有數對所構成的集合,

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據圖象,結合導函數的正負性、極值的定義逐一判斷即可.【詳解】由圖象可知,當時,;當時,,在上單調遞增,在上單調遞減,可知B錯誤,A正確;是極大值點,沒有極小值,和不是函數的極值點,可知C,D錯誤故選:A2、B【解析】函數,,,,,利用導數研究函數的單調性以及極值,畫出圖象A.結合圖象可判斷出正誤;B.設函數的值域為,函數,的值域為.若對,,使得成立,可得.分別求出,,即可判斷出正誤C.由函數在單調遞減,可得函數在單調遞增,由此即可判斷出正誤;D.方程有4個不等的實根,則,且時,有2個不等的實根,由圖象即可判斷出正誤;【詳解】函數,,,,可得函數在上單調遞減,在上單調遞減,在上單調遞增,當時,,由此作出函數的大致圖象,如圖示:A.由上述分析結合圖象,可得A不正確B.設函數的值域為,函數,的值域為,對,,.,,由,若對,,使得成立,則,所以,因此B正確C.由函數在單調遞減,可得函數在單調遞增,因此當時,,即,因此C不正確;D.方程有4個不等的實根,則,且時,有2個不等的實根,結合圖象可知,因此D不正確故選:B3、C【解析】根據等比數列的求和公式求解即可.【詳解】從第1次著地到第2次著地經過的路程為,第2次著地到第3次著地經過的路程為,組成以為首項,公比為的等比數列,所以第1次著地到第8次著地經過的路程為,所以經過的總路程是.故答案為:C.4、A【解析】根據橢圓的對稱性橢圓的定義可得,結合的范圍求的周長的取值范圍.【詳解】的周長,又因為A,B兩點為過原點O的動直線l與橢圓C的交點,所以A,B兩點關于原點對稱,橢圓C的左焦點為,則,所以,又因為三點不共線,所以,所以的周長的取值范圍為,故選:A.5、D【解析】利用余弦定理進行求解即可.【詳解】如圖所示:設臺風中心為,,小時后到達點處,即,當時,氣象臺所在地受到臺風影響,由余弦定理可知:,于是有:,解得:,所以氣象臺所在地受到臺風影響持續時間大約是,故選:D6、D【解析】設等比數列的公比為(),則由已知條件列方程組可求出【詳解】設等比數列的公比為(),由題意得,且,即,,因為,所以,,故選:D7、C【解析】若p成立則q成立且若q成立不能得到p一定成立,p是q充分不必要條件.【詳解】因為>0,<1,所以若p:成立,一定成立,但q:成立,p:不一定成立,所以p是q的充分不必要條件.故選:C.8、A【解析】由基本不等式直接求解即可得到結果.【詳解】由基本不等式知;(當且僅當時取等號),的最大值為.故選:A.9、C【解析】通過樣本中心點來求得正確答案.【詳解】,故,則,故.故選:C10、A【解析】把拋擲兩枚硬幣的情況均列舉出來,利用古典概型的計算公式,把,,算出來,判斷四個選項的正誤.【詳解】兩枚硬幣,記為與,則拋擲兩枚硬幣,一共會出現的情況有四種,A正B正,A正B反,A反B正,A反B反,則,,,所以A錯誤,BCD正確故選:A11、A【解析】根據對數函數的單調性,以及根式的運算,確定的大小關系,則問題得解.【詳解】因為,即;又,故.故選:A.12、C【解析】根據空間兩點間距離公式,結合對稱性進行求解即可.【詳解】因為點關于原點的對稱點為,所以,因此,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據動圓同時與圓及圓外切,即可得到幾何關系,再結合雙曲線的定義可得動點的軌跡方程.【詳解】由題,設動圓的半徑為,圓的半徑為,圓的半徑為,當動圓與圓,圓外切時,,,所以,因為圓心,,即,又根據雙曲線的定義,得動點的軌跡為雙曲線的上支,其中,,所以,則動圓圓心的軌跡方程是;故答案為:14、4##【解析】根據正態分布曲線的對稱性求解【詳解】因為ξ服從正態分布(),即正態分布曲線的對稱軸為,根據正態分布曲線的對稱性,可知ξ在與取值的概率相同,所以ξ在內取值的概率為0.4.故答案為:0.415、【解析】根據題意,歸納總結,結合等比數列的前項和公式,即可求得的通項公式.【詳解】結合已知條件,歸納總結如下:第一個圖案中,著色正方形的面積即;第二個圖案中,新著色的正方形面積是,故著色正方形的面積即;第三個圖案中,新著色的正方形面積是,故著色正方形的面積即;第個圖案中,新著色的正方形面積是,故著色正方形的面積即.故.故答案為:.16、【解析】首先利用導數判斷函數的單調性,再根據函數在開區間內存在最大值,可判斷極大值點就是最大值點,列式求解.【詳解】由題可知:所以函數在單調遞減,在單調遞增,故函數的極大值為.所以在開區間內的最大值一定是又,所以得實數的取值范圍是故答案為:【點睛】關鍵點點睛:由函數在開區間內若存在最大值,即極大值點在區間內,同時還得滿足極大值點是最大值,還需列不等式,不要忽略這個不等式.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)面積最小值是4【解析】本題主要考查拋物線的標準方程及其幾何性質、直線與圓錐曲線的位置關系、直線的斜率等基礎知識,考查學生的分析問題解決問題的能力、轉化能力、計算能力.第一問,依題意F(1,0),設直線AB的方程為.將直線AB的方程與拋物線的方程聯立,得,由此能夠求出直線AB的斜率;第二問,由點C與原點O關于點M對稱,得M是線段OC的中點,從而點O與點C到直線AB的距離相等,所以四邊形OACB的面積等于,由此能求出四邊形OACB的面積的最小值試題解析:(1)依題意知F(1,0),設直線AB方程為.將直線AB的方程與拋物線的方程聯立,消去x得.設,,所以,.①因為,所以.②聯立①和②,消去,得所以直線AB的斜率是(2)由點C與原點O關于點M對稱,得M是線段OC中點,從而點O與點C到直線AB的距離相等,所以四邊形OACB的面積等于因為,所以當m=0時,四邊形OACB的面積最小,最小值是4考點:拋物線的標準方程及其幾何性質、直線與圓錐曲線的位置關系、直線的斜率18、(I);(II)證明見解析.【解析】(I)根據頂點坐標求得,根據離心率求得,由此求得,進而求得橢圓方程.(II)設出直線的方程,聯立直線的方程和橢圓方程,寫出根與系數關系,根據,求得的關系式,由此判斷直線過定點.【詳解】(I)由于是橢圓的頂點,所以,由于,所以,所以,所以橢圓方程為.(II)由于是橢圓上異于點的不同的兩點,所以可設直線的方程為,設,由消去并化簡得,所以,即.,,,,解得,所以直線的方程為,過定點.【點睛】本小題主要考查橢圓方程的求法,考查直線和橢圓的位置關系,考查橢圓中的定值問題.19、(1);(2)直線與圓O相切,理由見解析.【解析】(1)法1:設外接圓為,由點在圓上,將其代入方程求參數,即可得圓的方程;法2:利用斜率的兩點式易得,則是△外接圓的直徑,進而求圓心坐標、半徑,即可得圓的標準方程.(2)由題設有直線垂直于x軸,根據直線平行于直線及所過的點寫出直線l的方程,求圓O的圓心與直線距離,并與半徑比大小,即可確定它們的位置關系.【小問1詳解】法1:設過三點的圓的方程為,則,解得,所求圓的方程為,即.法2:因,所以,則是△外接圓的直徑,圓心,所以所求圓的方程為.【小問2詳解】因為,則直線垂直于x軸,所以直線的方程為,由(1)知:圓心到直線的距離,所以直線與圓O相切.20、(1),;(2)答案見解析.【解析】(1)已知切線求方程參數,第一步求導,切點在曲線,切點在切線,切點處的導數值為切線斜率.(2)第一步定義域,第二步求導,第三步令導數大于或小于0,求解析,即可得到答案.【小問1詳解】的定義域為,,因為在點處的切線為,所以,所以;所以把點代入得:.即a,b的值為:,.【小問2詳解】由(1)知:.①當時,在上恒成立,所以在單調遞減;②當時,令,解得:,列表得:x-0+單調遞減極小值單調遞增所以,時,的遞減區間為,單增區間為.綜上所述:當時,在單調遞減;當時,的遞減區間為,單增區間為.【點睛】導函數中得切線問題第一步求導,第二步列切點在曲線,切點在切線,切點處的導數值為切線斜率這三個方程,可解切線相關問題.21、(1)(2)【解析】(1)求出圓心和半徑,寫出圓的方程;(2)求出圓心到直線距離,進而利用垂徑定理求出弦長.【小問1詳解】由題意可得,圓心為(2,0),半徑為2.則圓的方程為;【小問2詳解】由(1)可知:圓C半徑為,設圓心(2,0)到l的距離為d,則,由垂徑定理得:22、(1)(2),證明見解析.(3)不存在,【解析】(1)數列為首項為公差為的等差數列,利用等差數列的求和公式即可得出結果;(2),,成等差數列,則+=2,根據等比數列求和公式計算可解得,進而計算

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論