貴州省部分重點中學2023年高二上數學期末考試模擬試題含解析_第1頁
貴州省部分重點中學2023年高二上數學期末考試模擬試題含解析_第2頁
貴州省部分重點中學2023年高二上數學期末考試模擬試題含解析_第3頁
貴州省部分重點中學2023年高二上數學期末考試模擬試題含解析_第4頁
貴州省部分重點中學2023年高二上數學期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

貴州省部分重點中學2023年高二上數學期末考試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,則有()A. B.C. D.2.某班級從5名同學中挑出2名同學進行大掃除,若小王和小張在這5名同學之中,則小王和小張都沒有被挑出的概率為()A. B.C. D.3.有甲、乙兩個抽獎箱,甲箱中有3張無獎票3張有獎票,乙箱中有4張無獎票2張有獎票,某人先從甲箱中抽出一張放進乙箱,再從乙箱中任意抽出一張,則最后抽到有獎票的概率是()A. B.C. D.4.已知、是橢圓和雙曲線的公共焦點,是它們的一個公共點,且,橢圓的離心率為,雙曲線的離心率為,則()A.2 B.3C.4 D.55.方程有兩個不同的解,則實數k的取值范圍為()A. B.C. D.6.對于兩個平面、,“內有無數多個點到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件7.已知圓和橢圓.直線與圓交于、兩點,與橢圓交于、兩點.若時,的取值范圍是,則橢圓的離心率為()A. B.C. D.8.以軸為對稱軸,拋物線通徑的長為8,頂點在坐標原點的拋物線的方程是()A. B.C.或 D.或9.從全體三位正整數中任取一數,則此數以2為底的對數也是正整數的概率為()A. B.C. D.以上全不對10.已知橢圓與雙曲線有相同的焦點,則的值為A. B.C. D.11.已知是和的等比中項,則圓錐曲線的離心率為()A. B.或2C. D.或12.酒駕是嚴重危害交通安全的違法行為.根據國家有關規定:100血液中酒精含量在20~80之間為酒后駕車,80及以上為醉酒駕車.假設某駕駛員喝了一定量的酒后,其血液中的酒精含量上升到了1.2,且在停止喝酒以后,他血液中的酒精含量會以每小時20%的速度減少,若他想要在不違法的情況下駕駛汽車,則至少需經過的小時數約為()(參考數據:,)A.6 B.7C.8 D.9二、填空題:本題共4小題,每小題5分,共20分。13.“學習強國”學習平臺是由中宣部主管,以深入學習宣傳新時代中國特色社會主義思想為主要內容,立足全體黨員,面向全社會的優質平臺,現日益成為老百姓了解國家動態,緊跟時代脈搏的熱門APP,某市宣傳部門為了解全民利用“學習強國”了解國家動態的情況,從全市抽取2000名人員進行調查,統計他們每周利用“學習強國”的時長,下圖是根據調查結果繪制的頻率分布直方圖(1)根據上圖,求所有被抽查人員利用“學習強國”的平均時長和中位數;(2)宣傳部為了了解大家利用“學習強國”的具體情況,準備采用分層抽樣的方法從和組中抽取50人了解情況,則兩組各抽取多少人?再利用分層抽樣從抽取的50入中選5人參加一個座談會,現從參加座談會的5人中隨機抽取兩人發言,求小組中至少有1人發言的概率?14.如圖所示莖葉圖表示的是甲、乙兩人在5次綜合測評中的成績,其中一個數字被污損,若乙的總成績是445,則污損的數字是________15.過點作圓的兩條切線,切點為A,B,則直線的一般式方程為___________.16.已知斜率為的直線與橢圓相交于不同的兩點A,B,M為y軸上一點且滿足|MA|=|MB|,則點M的縱坐標的取值范圍是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列,若_________________(1)求數列的通項公式;(2)求數列的前項和從下列三個條件中任選一個補充在上面的橫線上,然后對題目進行求解①;②,,;③,點,在斜率是2的直線上18.(12分)已知,,函數,直線是函數圖象的一條對稱軸(1)求函數的解析式及單調遞增區間;(2)若,,的面積為,求的周長19.(12分)已知橢圓的左右焦點分別為,,點在橢圓上,與軸垂直,且(1)求橢圓的方程;(2)若點在橢圓上,且,求的面積20.(12分)已知過拋物線的焦點F且斜率為1的直線l交C于A,B兩點,且(1)求拋物線C的方程;(2)求以C的準線與x軸的交點D為圓心且與直線l相切的圓的方程21.(12分)在等差數列中,,.(1)求數列通項公式;(2)若,求數列的前項和.22.(10分)已知拋物線:的焦點為,直線與拋物線在第一象限的交點為,且(1)求拋物線的方程;(2)經過焦點作互相垂直的兩條直線,,與拋物線相交于,兩點,與拋物線相交于,兩點.若,分別是線段,的中點,求的最小值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】利用作差法計算與比較大小即可求解.【詳解】因為,,所以,所以,故選:A.2、B【解析】記另3名同學分別為a,b,c,應用列舉法求古典概型的概率即可.【詳解】記另3名同學分別為a,b,c,所以基本事件為,,(a,小王),(a,小張),,(b,小王),(b,小張),(c,小王),(c,小張),(小王,小張),共10種小王和小張都沒有被挑出包括的基本事件為,,,共3種,綜上,小王和小張都沒有挑出的概率為故選:B.3、B【解析】先分為在甲箱中抽出一張有獎票放入乙箱和在甲箱中抽出一張無獎票放入乙箱,進而結合條件概率求概率的方法求得答案.【詳解】記表示在甲箱中抽出一張有獎票放進乙箱,表示在甲箱中抽出一張無獎票放進乙箱,A表示最后抽到有獎票.所以,,于是.故選:B.4、C【解析】依據橢圓和雙曲線定義和題給條件列方程組,得到關于橢圓的離心率和雙曲線的離心率的關系式,即可求得的值.【詳解】設橢圓的長軸長為,雙曲線的實軸長為,令,不妨設則,解之得代入,可得整理得,即,也就是故選:C5、C【解析】轉化為圓心在原點半徑為1的上半圓和表示恒過定點的直線始終有兩個公共點,結合圖形可得答案.【詳解】令,平方得表示圓心在原點半徑為1的上半圓,表示恒過定點的直線,方程有兩個不同的解即半圓和直線要始終有兩個公共點,如圖圓心到直線的距離為,解得,當直線經過時由得,當直線經過時由得,所以實數k的取值范圍為.故選:C.6、B【解析】根據平面的性質分別判斷充分性和必要性.【詳解】充分性:若內有無數多個點到的距離相等,則、平行或相交,故充分性不成立;必要性:若,則內每個點到的距離相等,故必要性成立,所以“內有無數多個點到的距離相等”是“”的必要不充分條件.故選:B.7、C【解析】由題設,根據圓與橢圓的對稱性,假設在第一象限可得,結合已知有,進而求橢圓的離心率.【詳解】由題設,圓與橢圓的如下圖示:又時,的取值范圍是,結合圓與橢圓的對稱性,不妨假設在第一象限,∴從0逐漸增大至無窮大時,,故,∴故選:C.8、C【解析】由分焦點在軸的正半軸上和焦點在軸的負半軸上,兩種情況討論設出方程,根據,即可求解.【詳解】由題意,拋物線的頂點在原點,以軸為對稱軸,且通經長為8,當拋物線的焦點在軸的正半軸上時,設拋物線的方程為,可得,解得,所以拋物線方程為;當拋物線的焦點在軸的負半軸上時,設拋物線的方程為,可得,解得,所以拋物線方程為,所以所求拋物線的方程為.故選:C.9、B【解析】利用古典概型的概率求法求解.【詳解】從全體三位正整數中任取一數共有900種取法,以2為底的對數也是正整數的三位數有,共3個,所以以此數以2為底的對數也是正整數的概率為,故選:B10、C【解析】根據題意可知,結合的條件,可知,故選C考點:橢圓和雙曲線性質11、B【解析】由等比中項的性質可得,分別計算曲線的離心率.【詳解】由是和的等比中項,可得,當時,曲線方程為,該曲線為焦點在軸上的橢圓,離心率,當時,曲線方程為,該曲線為焦點在軸上的雙曲線,離心率,故選:B.12、C【解析】根據題意列出不等式,利用指對數冪的互化和對數的運算公式即可解出不等式.【詳解】設該駕駛員至少需經過x個小時才能駕駛汽車,則,所以,則,所以該駕駛員至少需經過約8個小時才能駕駛汽車.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、(1)平均時長為,中位數為(2)在和兩組中分別抽取30人和20人,概率【解析】(1)由頻率分布直方圖計算平均數,中位數的公式即可求解;(2)先根據分層抽樣求出每一組抽取的人數,再列舉抽取總事件個數,從而利用古典概型概率計算公式即可求解【小問1詳解】解:(1)設被抽查人員利用“學習強國”的平均時長為,中位數為,,被抽查人員利用“學習強國”的時長中位數滿足,解得,即抽查人員利用“學習強國”的平均時長為6.8,中位數為【小問2詳解】解:組的人數為人,設抽取的人數為,組的人數為人,設抽取的人數為,則,解得,,所以在和兩組中分別抽取30人和20人,再利用分層抽樣從抽取的50入中抽取5人,兩組分別抽取3人和2人,將組中被抽取的工作人員標記為,,,將中的標記為,,則抽取的情況如下:,,,,,,,,,,,,,,,,,,,共10種情況,其中在中至少抽取1人有7種,故所求概率14、3【解析】設污損的葉對應的成績是x,由莖葉圖可得445=83+83+87+x+99,解得x=93,故污損的數字是3.考點:莖葉圖.15、【解析】已知圓的圓心,點在以為直徑的圓上,兩圓相減就是直線的方程.【詳解】,圓心,點在以為直徑的圓上,,所以圓心是,以為直徑的圓的圓的方程是,直線是兩圓相交的公共弦所在直線,所以兩圓相減就是直線的方程,,所以直線的一般式方程為.故答案為:【點睛】結論點睛:過圓外一點引圓的切線,那么以圓心和圓外一點連線段為直徑的圓與已知圓相減,就是切點所在直線方程,或是兩圓相交,兩圓相減,就是公共弦所在直線方程.16、【解析】設直線的方程為,由消去并化簡得,設,,,解得..由于,所以是垂直平分線與軸的交點,垂直平分線方程為,令得,由于,所以.也即的縱坐標的取值范圍是.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、答案見解析.【解析】(1)若選①,根據通項公式與前項和的關系求解通項公式即可;若選②,根據可得數列為等差數列,利用基本量法求解通項公式即可;若選③,根據兩點間的斜率公式可得,可得數列為等差數列進而求得通項公式;(2)利用裂項相消求和即可【詳解】解:(1)若選①,由,所以當,,兩式相減可得:,而在中,令可得:,符合上式,故若選②,由(,)可得:數列為等差數列,又因為,,所以,即,所以若選③,由點,在斜率是2的直線上得:,即,所以數列為等差數列且(2)由(1)知:,所以18、(1),單調遞增區間為.(2)【解析】(1)先利用向量數量積運算、二倍角公式、輔助角公式求出,再求單增區間;(2)利用面積公式求出,再利用余弦定理求出,即可求出周長.小問1詳解】已知,,函數,所以.因為直線是函數圖象的一條對稱軸,所以,所以,又,所以當k=0時,符合題意,此時要求的單調遞增區間,只需,解得:,所以的單調遞增區間為.【小問2詳解】由于,所以,所以.因為,所以.因為的面積為,所以,即,解得:.又,由余弦定理可得:,即,所以,所以,所以的周長.19、(1);(2)【解析】(1)由橢圓的性質求出,進而得出方程;(2)由,結合余弦定理求出,再由面積公式得出三角形的面積.【詳解】解:(1),與軸垂直,,∴∴橢圓的方程為(2)由(1)知,∵,∴∴,∴的面積為【點睛】關鍵點睛:解決問題二的關鍵在于利用余弦定理結合完全平方和公式求出,進而得出面積.20、(1);(2)【解析】(1)首先表示出直線l的方程,再聯立直線與拋物線方程,消去,列出韋達定理,再根據焦點弦公式計算可得;(2)由(1)可得,再利用點到直線的距離求出半徑,即可求出圓的方程;【詳解】解析:(1)由已知得點,∴直線l的方程為,聯立去,消去整理得設,,則,,∴拋物線C的方程為(2)由(1)可得,直線l的方程為,∴圓D的半徑,∴圓D的方程為【點睛】本題考查拋物線的簡單幾何性質,屬于中檔題.21、(1);(2).【解析】(1)利用等差數列的基本量,根據題意,列出方程,即可求得公差以及通項公式;(2)根據(1)中所求,結合等差數列的前項和的公式,求得,以及,再利用等比數列的前項和公式求得.【小問1詳解】因為,所以,故可得,所以.【小問2詳解】因為,所以.于是,令,則.顯然數列是等比數列,且,公比,所以數列的前n項和.22、(1);(2)8.【解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論