




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省揭陽市第三中學2023年高二數學第一學期期末學業水平測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設拋物線的焦點為,點為拋物線上一點,點坐標為,則的最小值為()A. B.C. D.2.圓心,半徑為的圓的方程是()A. B.C. D.3.函數在單調遞增的一個必要不充分條件是()A. B.C. D.4.已知圓:的面積被直線平分,圓:,則圓與圓的位置關系是()A.相離 B.相交C.內切 D.外切5.已知實數成等比數列,則圓錐曲線的離心率為()A. B.2C.或2 D.或6.在長方體中,,,則異面直線與所成角的正弦值是()A. B.C. D.7.已知向量,則“”是“”的()A充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件8.若雙曲線離心率為,過點,則該雙曲線的方程為()A. B.C. D.9.2019年湖南等8省公布了高考改革綜合方案將采取“”模式即語文、數學、英語必考,考生首先在物理、歷史中選擇1門,然后在思想政治、地理、化學、生物中選擇2門,一名同學隨機選擇3門功課,則該同學選到歷史、地理兩門功課的概率為()A. B.C. D.10.青少年視力被社會普遍關注,為了解他們的視力狀況,經統計得到圖中右下角名青少年的視力測量值(五分記錄法)的莖葉圖,其中莖表示個位數,葉表示十分位數.如果執行如圖所示的算法程序,那么輸出的結果是()A. B.C. D.11.已知點在橢圓上,與關于原點對稱,,交軸于點,為坐標原點,,則橢圓離心率為()A. B.C. D.12.已知直線l和兩個不同的平面,,,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.若“”是真命題,則實數的最小值為_____________.14.已知雙曲線C的方程為,,,雙曲線C上存在一點P,使得,則實數a的最大值為___________.15.數列滿足,則_______________.16.已知雙曲線,則圓的圓心C到雙曲線漸近線的距離為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在長方形ABCD中,AD=2AB=2,點E是AD的中點,沿BE折起平面ABE,使平面ABE⊥平面BCDE.(1)求證:在四棱錐A-BCDE中,AB⊥AC.(2)在線段AC上是否存在點F,使二面角A-BE-F的余弦值為?若存在,找出點F的位置;若不存在,說明理由.18.(12分)在下列所給的三個條件中任選一個,補充在下面的問題中,并加以解答①過(-1,2);②與直線平行;③與直線垂直問題:已知直線過點M(3,5),且______(1)求的方程;(2)若與圓相交于點A、B,求弦AB的長19.(12分)已知橢圓的左右焦點分別為,,點在橢圓上,與軸垂直,且(1)求橢圓的方程;(2)若點在橢圓上,且,求的面積20.(12分)已知橢圓的右頂點為,上頂點為.離心率為,.(1)求橢圓的標準方程;(2)若,是橢圓上異于長軸端點的兩點(斜率不為0),已知直線,且,垂足為,垂足為,若,且的面積是面積的5倍,求面積的最大值.21.(12分)求函數在區間上的最大值和最小值22.(10分)已知函數.(1)當時,求的單調區間與極值;(2)若在上有解,求實數a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設點P在準線上的射影為D,則根據拋物線的定義可知|PF|=|PD|,進而把問題轉化為求|PM|+|PD|的最小值,即可求解【詳解】解:由題意,設點P在準線上的射影為D,則根據拋物線的定義可知|PF|=|PD|,所以要求|PM|+|PF|的最小值,即求|PM|+|PD|的最小值,當D,P,M三點共線時,|PM|+|PD|取得最小值為故選:B2、D【解析】根據圓心坐標及半徑,即可得到圓的方程.【詳解】因為圓心為,半徑為,所以圓的方程為:.故選:D.3、D【解析】求出導函數,由于函數在區間單調遞增,可得在區間上恒成立,求出的范圍,再根據充分必要條件的定義即可判斷得解.【詳解】由題得,函數在區間單調遞增,在區間上恒成立,而在區間上單調遞減,選項中只有是的必要不充分條件.選項AC是的充分不必要條件,選項B是充要條件.故選:D4、D【解析】根據題意,圓:的面積被直線平分,即直線經過圓的圓心,由此求出兩圓的圓心和半徑,然后判斷兩個圓的位置關系即可【詳解】根據題意,圓:,即,其圓心為,半徑,圓:的面積被直線平分,即直線經過圓的圓心,則有1?m+1=0,解可得m=2,即所以圓的圓心(1,?1),半徑為1,圓的標準方程是,圓心(?2,3),半徑為4,其圓心距,所以兩個圓外切,故選:D.5、C【解析】根據成等比數列求得,再根據離心率計算公式即可求得結果.【詳解】因為實數成等比數列,故可得,解得或;當時,表示焦點在軸上的橢圓,此時;當時,表示焦點在軸上的雙曲線,此時.故選:C.6、C【解析】連接,可得,得到異面直線與所成角即為直線與所成角,設,設,求得的值,在中,利用余弦定理,即可求解.【詳解】如圖所示,連接,在正方體中,可得,所以異面直線與所成角即為直線與所成角,設,由在長方體中,,,設,可得,在直角中,可得,在中,可得,所以,因為,所以.故選:C.7、A【解析】根據得出,根據充分必要條件的定義可判斷.【詳解】解:∵,向量,,∴,即,根據充分必要條件的定義可判斷:“”是“”的充分不必要條件,故選:A.8、B【解析】分析可得,再將點代入雙曲線的方程,求出的值,即可得出雙曲線的標準方程.【詳解】,則,,則雙曲線的方程為,將點的坐標代入雙曲線的方程可得,解得,故,因此,雙曲線的方程為.故選:B9、A【解析】先由列舉法計算出基本事件的總數,然后再求出該同學選到歷史、地理兩門功課的基本事件的個數,基本事件個數比即為所求概率.【詳解】由題意,記物理、歷史分別為、,從中選擇1門;記思想政治、地理、化學、生物為、、、,從中選擇2門;則該同學隨機選擇3門功課,所包含的基本事件有:,,,,,,,,,,,,共個基本事件;該同學選到歷史、地理兩門功課所包含的基本事件有:,,共個基本事件;該同學選到物理、地理兩門功課的概率為.故選:A.【點睛】本題考查求古典概型的概率,屬于基礎題型.10、B【解析】依題意該程序框圖是統計這12名青少年視力小于等于的人數,結合莖葉圖判斷可得;【詳解】解:根據程序框圖可知,該程序框圖是統計這12名青少年視力小于等于的人數,由莖葉圖可知視力小于等于的有5人,故選:B11、B【解析】由,得到,結合,得到,進而求得,得出,結合離心率的定義,即可求解.【詳解】設,則,由,可得,所以,因為,可得,又由,兩式相減得,即,即,又因為,所以,即又由,所以,解得.故選:B.12、D【解析】根據直線、平面的位置關系,應用定義法判斷兩個條件之間的充分、必要性.【詳解】當,時,直線l可與平行、相交,故不一定成立,即充分性不成立;當,時,直線l可在平面內,故不一定成立,即必要性不成立.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】若“”是真命題,則大于或等于函數在的最大值因為函數在上為增函數,所以,函數在上的最大值為1,所以,,即實數的最小值為1.所以答案應填:1.考點:1、命題;2、正切函數的性質.14、2【解析】設出,根據條件推出在圓上運動,根據題意要使雙曲線和圓有交點,則得答案.【詳解】設點,由得:,所以,化簡得:,即滿足條件的點在圓上運動,又點存在于上,故雙曲線與圓有交點,則,即實數a的最大值為2,故答案為:215、【解析】利用來求得,進而求得正確答案.【詳解】,,是數列是首項為,公差為的等差數列,所以,所以.故答案為:16、2【解析】求出圓心和雙曲線的漸近線方程,即得解.【詳解】解:由題得圓的圓心為,雙曲線的漸近線方程為,即.所以圓心到雙曲線漸近線的距離為.故答案為:2三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)點F為線段AC的中點【解析】(1)由平面幾何知識證得CE⊥BE,再根據面面垂直的性質,線面垂直的判定和性質可得證;(2)取BE的中點O,以O為原點,分別以的方向為x軸,y軸,z軸建立空間直角坐標系,假設在線段AC上存在點F,設=λ,運用二面角的向量求解方法可求得,可得點F的位置.【小問1詳解】證明:因為在長方形ABCD中,AD=2AB=2,點E是AD的中點,所以BE=CE=2,又BC=2,所以,所以CE⊥BE,又平面ABE⊥平面BCDE,面面,所以CE⊥平面ABE,所以AB⊥CE.又AB⊥AE,,所以AB⊥平面AEC,即得AB⊥AC.【小問2詳解】解:存在點F,F為線段AC的中點.由(1)得△ABE和△BEC均為等腰直角三角形,取BE的中點O,則,又平面ABE⊥平面BCDE,面面,所以面,以O為原點,分別以的方向為x軸,y軸,z軸建立空間直角坐標系,如圖所示,取平面ABE的一個法向量為.假設在線段AC上存在點F,使二面角A-BE-F的余弦值為.則A(0,0,1),B(1,0,0),C(-1,2,0),E(-1,0,0),=(1,0,1),=(-1,2,-1),設=λ,則+λ=(1-λ,2λ,1-λ),又=(2,0,0),設平面BEF的法向量為,可得,即得,可取y=1,得,所以,解得λ=,即當點F為線段AC的中點時,二面角A-BE-F的余弦值為.18、(1)(2)【解析】(1)可依次根據直線方程的點斜式、“兩直線平行,斜率相等”、“兩直線垂直,斜率相乘為-1”求直線l的方程;(2)利用垂徑定理即可求圓的弦長.【小問1詳解】選條件①:∵直線過點(3,5)及(-1,2),∴直線的斜率為,依題意,直線的方程為,即;選條件②:∵直線的斜率為,直線與直線平行,∴直線的斜率為,依題意,直線的方程為;即;選條件③:∵直線的斜率為,直線與直線垂直,∴直線的斜率為,依題意,直線的方程為,即;【小問2詳解】圓心為(2,3),半徑為2,圓心到直線的距離為∴19、(1);(2)【解析】(1)由橢圓的性質求出,進而得出方程;(2)由,結合余弦定理求出,再由面積公式得出三角形的面積.【詳解】解:(1),與軸垂直,,∴∴橢圓的方程為(2)由(1)知,∵,∴∴,∴的面積為【點睛】關鍵點睛:解決問題二的關鍵在于利用余弦定理結合完全平方和公式求出,進而得出面積.20、(1)(2)面積的最大值為【解析】(1)由離心率為,,得,解得,,,進而可得答案(2)設直線的方程為,,,,,聯立直線與橢圓的方程,結合韋達定理可得,,由弦長公式可得,點到直線的距離,則,,由的面積是面積的5倍,解得,再計算的最大值,即可【小問1詳解】解:因為離心率為,,所以,解得,,,所以【小問2詳解】解:設直線的方程為,,,,,聯立,得,所以,,所以,點到直線的距離,所以,,因為的面積是面積的5倍,所以所以或,又因為,是橢圓上異于長軸端點的兩點,所以,所以,令,所以,因為在上單調遞增,所以,(當時,取等號),所以面積的最大值為.21、,【解析】先求導函數,再根據導函數得到單調區間,比較極值和端點值,即可得到最大值和最小值.【詳解】解:依題意,,令,得或,所以函數在和上單調遞增,在上單調遞減,又,,,所以,22、(1)在上單調遞減,在上單調遞增,函數有極小值,無極大值(2)【解析】(1)利用導數的正負判斷函數的單調性,然后由極值的定義求解即可;(2)分和兩種情況分析求解,當時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 線性代數自考試題及答案
- 物理選拔試題及答案
- 江蘇省宿遷市宿城區2025年中考二模語文試題(含答案)
- 2025年河南省駐馬店市實驗中學、市四中等部分學校聯考中考模擬英語試題(含答案無聽力音頻及原文)
- 2025信息技術咨詢服務框架合同
- 2025教育機構與托兒所合作合同范本示例
- Q1人工智能現狀分析中國
- Deferasirox-13C6-ICL-670-sup-13-sup-C-sub-6-sub-生命科學試劑-MCE
- 廣東省汕尾市2025年考研數學(三)線性代數與微積分難題匯編與解析
- 《生物入侵者》閱讀答案
- 2024西部縣域經濟百強研究
- 《樹欲靜而風不止》課件
- 兒童繪本故事《螞蟻搬家》
- 物聯網技術及應用基礎(第2版) -電子教案
- 河北省保定市(2024年-2025年小學六年級語文)統編版小升初真題(下學期)試卷及答案
- 水污染控制工程知到智慧樹章節測試課后答案2024年秋黑龍江科技大學
- 【MOOC】宇宙簡史-南京大學 中國大學慕課MOOC答案
- 【MOOC】敢創會創-大學生創新創業實務-南京信息工程大學 中國大學慕課MOOC答案
- 2024年國開電大行政領導學形成性考試
- 對乳腺癌患者的心理護理
- 北師大版三年級數學下冊復習計劃
評論
0/150
提交評論