甘肅省白銀市靖遠縣第二中學2023年數學高二上期末綜合測試模擬試題含解析_第1頁
甘肅省白銀市靖遠縣第二中學2023年數學高二上期末綜合測試模擬試題含解析_第2頁
甘肅省白銀市靖遠縣第二中學2023年數學高二上期末綜合測試模擬試題含解析_第3頁
甘肅省白銀市靖遠縣第二中學2023年數學高二上期末綜合測試模擬試題含解析_第4頁
甘肅省白銀市靖遠縣第二中學2023年數學高二上期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

甘肅省白銀市靖遠縣第二中學2023年數學高二上期末綜合測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列數列是遞增數列的是()A. B.C. D.2.我國古代數學著作《九章算術》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤,斬末一尺,重二斤”意思是:“現有一根金杖,長5尺,頭部1尺,重4斤;尾部1尺,重2斤;若該金杖從頭到尾每一尺重量構成等差數列,其中重量為,則的值為()A.4 B.12C.15 D.183.設拋物線的焦點為,準線與軸的交點為,是上一點,若,則()A. B.C. D.4.若連續拋擲兩次骰子得到的點數分別為m,n,則點P(m,n)在直線x+y=4上的概率是()A. B.C. D.5.對于兩個平面、,“內有三個點到的距離相等”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.用1,2,3,4這4個數字可寫出()個沒有重復數字的三位數A.24 B.12C.81 D.647.如圖,是邊長為4的等邊三角形的中位線,將沿折起,使得點A與P重合,平面平面,則四棱錐外接球的表面積是()A. B.C. D.8.已知定義在上的函數的導函數為,且恒有,則下列不等式一定成立的是()A. B.C. D.9.傾斜角為120°,在x軸上截距為-1的直線方程是()A.x-y+1=0 B.x-y-=0C.x+y-=0 D.x+y+=010.在三棱錐中,,,,若,,則()A. B.C. D.11.設為數列的前n項和,且,則=()A.26 B.19C.11 D.912.曲線上的點到直線的最短距離是()A. B.C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.某中學高三(2)班甲,乙兩名同學自高中以來每次考試成績的莖葉圖如圖所示,則甲的中位數與乙的極差的和為___________.14.某校老年、中年和青年教師的人數見如表,采用分層抽樣的方法調查教師的身體狀況,在抽取的樣本中,青年教師有人,則該樣本的老年教師人數為______.類別老年教師中年教師青年教師合計人數90018001600430015.數列的前項和為,則_________________.16.如圖:二面角等于,是棱上兩點,分別在半平面內,,則的長等于__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)近年來,我國電子商務蓬勃發展.2016年“618”期間,某網購平臺的銷售業績高達516億元人民幣,與此同時,相關管理部門推出了針對該網購平臺的商品和服務的評價系統.從該評價系統中選出200次成功交易,并對其評價進行統計,網購者對商品的滿意率為0.6,對服務的滿意率為0.75,其中對商品和服務都滿意的交易為80次.(1)根據已知條件完成下面的列聯表,并回答能否有的把握認為“網購者對商品滿意與對服務滿意之間有關系”?對服務滿意對服務不滿意合計對商品滿意80對商品不滿意10合計200(2)若將頻率視為概率,某人在該網購平臺上進行的3次購物中,設對商品和服務都滿意的次數為隨機變量,求的分布列和數學期望.臨界值表:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.89710.828的觀測值:(其中).18.(12分)已知函數,其中,.(1)當時,求曲線在點處切線方程;(2)求函數的單調區間.19.(12分)已知圓O:與圓C:(1)在①,②這兩個條件中任選一個,填在下面的橫線上,并解答若______,判斷這兩個圓的位置關系;(2)若,求直線被圓C截得的弦長注:若第(1)問選擇兩個條件分別作答,按第一個作答計分20.(12分)已知是邊長為2的正方形,正方形繞旋轉形成一個圓柱;(1)求該圓柱的表面積;(2)正方形繞順時針旋轉至,求異面直線與所成角的大小21.(12分)已知橢圓C:的長軸長為4,過C的一個焦點且與x軸垂直的直線被C截得的線段長為3(1)求C的方程;(2)若直線:與C交于A,B兩點,線段AB的中垂線與C交于P,Q兩點,且,求m的值22.(10分)從甲、乙兩名學生中選拔一人參加射擊比賽,現對他們的射擊水平進行測試,兩人在相同條件下各射靶10次,每次命中的環數如下:甲:7,8,6,8,6,5,9,10,7,乙:9,5,7,8,7,6,8,6,7,(1)求,,,(2)你認為應該選哪名學生參加比賽?為什么?

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】分別判斷的符號,從而可得出答案.【詳解】解:對于A,,則,所以數列為遞減數列,故A不符合題意;對于B,,則,所以數列為遞減數列,故B不符合題意;對于C,,則,所以數列為遞增數列,故C符合題意;對于D,,則,所以數列遞減數列,故D不符合題意.故選:C.2、C【解析】先求出公差,再利用公式可求總重量.【詳解】設頭部一尺重量為,其后每尺重量依次為,由題設有,,故公差為.故中間一尺的重量為所以這5項和為.故選:C.3、D【解析】求出拋物線的準線方程,可得出點的坐標,利用拋物線的定義可求得點的坐標,再利用兩點間的距離公式可求得結果.【詳解】易知拋物線焦點為,準線方程為,可得準線與軸的交點,設點,由拋物線的性質,,可得,所以,,解得,即點,所以.故選:D.4、D【解析】利用分布計數原理求出所有的基本事件個數,在求出點落在直線x+y=4上包含的基本事件個數,利用古典概型的概率個數求出.解:連續拋擲兩次骰子出現的結果共有6×6=36,其中每個結果出現的機會都是等可能的,點P(m,n)在直線x+y=4上包含的結果有(1,3),(2,2),(3,1)共三個,所以點P(m,n)在直線x+y=4上的概率是3:36=1:12,故選D考點:古典概型點評:本題考查先判斷出各個結果是等可能事件,再利用古典概型的概率公式求概率,屬于基礎題5、B【解析】根據平面的性質分別判斷充分性和必要性.【詳解】充分性:若內有三個點到的距離相等,當這三個點不在一條直線上時,可得;當這三個點在一條直線上時,則、平行或相交,故充分性不成立;必要性:若,則內每個點到的距離相等,故必要性成立,所以“內有三個點到的距離相等”是“”的必要不充分條件.故選:B.6、A【解析】由題意,從4個數中選出3個數出來全排列即可.【詳解】由題意,從4個數中選出3個數出來全排列,共可寫出個三位數.故選:A7、A【解析】分別取的中點,易得,則點為四邊形的外接圓的圓心,則四棱錐外接球的球心在過點且垂直平面的直線上,設球心為,設外接球的半徑為,,利用勾股定理求得半徑,從而可得出答案.【詳解】解:分別取的中點,在等邊三角形中,,是中位線,則都是等邊三角形,所以,所以點為四邊形的外接圓的圓心,則四棱錐外接球的球心在過點且垂直平面的直線上,設球心為,由為的中點,所以,因為平面平面,且平面平面,平面,所以平面,則,設外接球半徑為,,,則,,所以,解得,所以,所以四棱錐外接球的表面積是.故選:A.第II卷8、D【解析】構造函數,用導數判斷函數單調性,即可求解.【詳解】根據題意,令,其中,則,∵,∴,∴在上為單調遞減函數,∴,即,,則錯誤;,即,則錯誤;,即,則錯誤;,即,則正確;故選:.9、D【解析】由傾斜角求出斜率,寫出斜截式方程,再化為一般式【詳解】由于傾斜角為120°,故斜率k=-.又直線過點(-1,0),所以方程為y=-(x+1),即x+y+=0.故選:D.【點睛】本題考查直線方程的斜截式,屬于基礎題10、B【解析】根據空間向量的基本定理及向量的運算法則計算即可得出結果.【詳解】連接,因為,所以,因為,所以,所以,故選:B11、D【解析】先求得,然后求得.【詳解】依題意,當時,,當時,,,所以,所以.故選:D12、B【解析】先求與平行且與相切的切線切點,再根據點到直線距離公式得結果.【詳解】設與平行的直線與相切,則切線斜率k=1,∵∴,由,得當時,即切點坐標為P(1,0),則點(1,0)到直線的距離就是線上的點到直線的最短距離,∴點(1,0)到直線的距離為:,∴曲線上的點到直線l:的距離的最小值為.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、111【解析】求出甲的中位數和乙的極差即得解.【詳解】解:由題得甲的中位數為,乙的極差為,所以它們的和為.故答案為:11114、【解析】由題意,總體中青年教師與老年教師比例為;設樣本中老年教師的人數為x,由分層抽樣的性質可得總體與樣本中青年教師與老年教師的比例相等,即,解得.故答案為.考點:分層抽樣.15、【解析】利用計算可得出數列的通項公式.【詳解】當時,;而不適合上式,.故答案:.16、【解析】由題意,二面角等于,根據,結合向量的運算,即可求解.【詳解】由題意,二面角等于,可得向量,,因為,可得,所以.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)列聯表見解析,能有;(2)分布列見解析,.【解析】(1)利用數據直接填寫聯列表即可,求出,即可回答是否有的把握認為“網購者對商品滿意與對服務滿意之間有關系;(2)由題意可得的可能值為0,1,2,3,分別可求其概率,可得分布列,進而可得數學期望.【詳解】(1)服務滿意對服務不滿意合計對商品滿意8040120對商品不滿意701080合計15050200,因為,所以能有的把握認為“網購者對商品滿意與對服務滿意之間有關系”(2)每次購物時,對商品和服務都滿意的概率為,且的取值可以是0,1,2,3.;;;.的分布列為:0123所以.【點睛】本題主要考查獨立檢驗以及離散性隨機變量的分布列以及期望的求法,考查轉化思想以及計算能力,屬于中檔題.18、(1);(2)答案見解析.【解析】(1)當時,,求出函數的導函數,再求出,,再利用點斜式求出切線方程;(2)首先求出函數的導函數,再對參數分類討論,求出函數的單調區間;【詳解】解:(1)當時,,所以,所以,,所以切線方程為:,即:(2)函數定義域為,,因為,①當時,在上恒成立,所以函數的單調遞增區間為,無單調遞減區間;②當時,由得,由得,所以函數的單調遞增區間為,單調遞減區間為【點睛】本題考查導數的幾何意義,利用導數研究含參函數的單調區間,屬于基礎題.19、(1)選①:外離;選②:相切;(2)【解析】(1)不論選①還是選②,都要首先算出兩圓的圓心距,然后和兩圓的半徑之和或差進行比較即可;(2)根據點到直線的距離公式,先計算圓心到直線的距離,然后利用圓心距、半徑、弦長的一半之間的關系求解.【小問1詳解】選①圓O的圓心為,半徑為l;圓C的圓心為,半徑為因為兩圓的圓心距為,且兩圓的半徑之和為,所以兩圓外離選②圓O的圓心為,半徑為1.圓C的圓心為,半徑為2因為兩圓的圓心距為.且兩圓的半徑之和為,所以兩圓外切【小問2詳解】因為點C到直線的距離,所以直線被圓C截得的弦長為20、(1)(2)【解析】(1)利用表面積公式直接計算得到答案.(2)連接和,,故即為異面直線與所成角,證明,根據長度關系得到答案.【小問1詳解】【小問2詳解】如圖所示:連接和,,故即為異面直線與所成角,,,,故平面,平面,故,,故,直角中,,,,故異面直線與所成角的大小為.21、(1);(2).【解析】(1)由題設可得且,求出,即可得橢圓方程.(2)聯立直線l和橢圓C并整理為關于x的一元二次方程,由求出m的范圍,再應用韋達定理、弦長公式求,進而可得線段AB的中垂線,同理聯立曲線C求相交

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論