福建省永春三中2024屆高二上數(shù)學期末達標檢測試題含解析_第1頁
福建省永春三中2024屆高二上數(shù)學期末達標檢測試題含解析_第2頁
福建省永春三中2024屆高二上數(shù)學期末達標檢測試題含解析_第3頁
福建省永春三中2024屆高二上數(shù)學期末達標檢測試題含解析_第4頁
福建省永春三中2024屆高二上數(shù)學期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

福建省永春三中2024屆高二上數(shù)學期末達標檢測試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.命題“,使得”的否定形式是A.,使得 B.,使得C.,使得 D.,使得2.“”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.2021年是中國共產(chǎn)黨百年華誕,3月24日,中宣部發(fā)布中國共產(chǎn)黨成立100周年慶祝活動標識(如圖1).其中“100”的兩個“0”設(shè)計為兩個半徑為R的相交大圓,分別內(nèi)含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切(如圖2).已知,則由其中一個圓心向另一個小圓引的切線長與兩大圓的公共弦長之比為()A. B.3C. D.4.設(shè)函數(shù)的圖象在點處的切線為,則與坐標軸圍成的三角形面積的最小值為()A. B.C. D.5.已知雙曲線的兩個焦點為,,是此雙曲線上的一點,且滿足,,則該雙曲線的方程是()A. B.C. D.6.已知,且,則的最大值為()A. B.C. D.7.圓關(guān)于直線對稱,則的最小值是()A. B.C. D.8.已知平面,的法向量分別為,,則()A. B.C.,相交但不垂直 D.,的位置關(guān)系不確定9.若等比數(shù)列中,,,那么()A.20 B.18C.16 D.1410.如圖,橢圓的右焦點為,過與軸垂直的直線交橢圓于第一象限的點,點關(guān)于坐標原點的對稱點為,且,,則橢圓方程為()A. B.C. D.11.十二平均律是我國明代音樂理論家和數(shù)學家朱載堉發(fā)明的.明萬歷十二年(公元1584年),他寫成《律學新說》,提出了十二平均律的理論.十二平均律的數(shù)學意義是:在1和2之間插入11個正數(shù),使包含1和2的這13個數(shù)依次成遞增的等比數(shù)列.依此規(guī)則,插入的第四個數(shù)應(yīng)為()A. B.C. D.12.已知雙曲線,則該雙曲線的實軸長為()A.1 B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.高二某位同學參加物理、政治科目的學考,已知這位同學在物理、政治科目考試中得A的概率分別為、,這兩門科目考試成績的結(jié)果互不影響,則這位考生至少得1個A的概率為______14.函數(shù)的圖象在處的切線方程為,則___________.15.已知分別是平面α,β,γ的法向量,則α,β,γ三個平面中互相垂直的有________對16.已知正方體的棱長為為的中點,為面內(nèi)一點.若點到面的距離與到直線的距離相等,則三棱錐體積的最小值為__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)曲線與曲線在第一象限的交點為.曲線是()和()組成的封閉圖形.曲線與軸的左交點為、右交點為.(1)設(shè)曲線與曲線具有相同的一個焦點,求線段的方程;(2)在(1)的條件下,曲線上存在多少個點,使得,請說明理由.(3)設(shè)過原點的直線與以為圓心的圓相切,其中圓的半徑小于1,切點為.直線與曲線在第一象限的兩個交點為..當對任意直線恒成立,求的值.18.(12分)如圖,三棱錐中,兩兩垂直,,且分別為線段的中點.(1)若點是線段的中點,求證:直線平面;(2)求證:平面平面.19.(12分)已知函數(shù),其中.(1)當時,求函數(shù)的單調(diào)性;(2)若對,不等式在上恒成立,求的取值范圍.20.(12分)如圖所示,是棱長為的正方體,是棱的中點,是棱的中點(1)求直線與平面所成角的正弦值;(2)求到平面的距離21.(12分)如下圖,已知點是離心率為的橢圓:上的一點,斜率為的直線交橢圓于、兩點,且、、三點互不重合(1)求橢圓的方程;(2)求證:直線,的斜率之和為定值22.(10分)設(shè)函數(shù)(1)若,求的單調(diào)區(qū)間和極值;(2)在(1)的條件下,證明:若存在零點,則在區(qū)間上僅有一個零點;(3)若存在,使得,求的取值范圍

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】的否定是,的否定是,的否定是.故選D【考點】全稱命題與特稱命題的否定【方法點睛】全稱命題的否定是特稱命題,特稱命題的否定是全稱命題.對含有存在(全稱)量詞的命題進行否定需要兩步操作:①將存在(全稱)量詞改成全稱(存在)量詞;②將結(jié)論加以否定2、B【解析】方程表示橢圓,可得,解出的范圍即可判斷出結(jié)論.【詳解】∵方程表示橢圓,∴解得或,故“”是“方程表示橢圓”的必要不充分條件.故選:B3、C【解析】作出圖形,進而根據(jù)勾股定理并結(jié)合圓與圓的位置關(guān)系即可求得答案.【詳解】如示意圖,由題意,,則,又,,所以,所以.故選:C.4、C【解析】利用導數(shù)的幾何意義求得切線為,求x、y軸上截距,進而可得與坐標軸圍成的三角形面積,利用導數(shù)研究在上的最值即可得結(jié)果.【詳解】由題設(shè),,則,又,所以切線為,當時,當時,又,所以與坐標軸圍成的三角形面積為,則,當時,當時,所以在上遞減,在上遞增,即.故選:C5、A【解析】由,可得進一步求出,由此得到,則該雙曲線的方程可求【詳解】,即,則.即,則該雙曲線的方程是:故選:A【點睛】方法點睛:求圓錐曲線的方程,常用待定系數(shù)法,先定式(根據(jù)已知確定焦點所在的坐標軸,設(shè)出曲線的方程),再定式(根據(jù)已知建立方程組解方程組得解).6、A【解析】由基本不等式直接求解即可得到結(jié)果.【詳解】由基本不等式知;(當且僅當時取等號),的最大值為.故選:A.7、C【解析】先求出圓的圓心坐標,根據(jù)條件可得直線過圓心,從而可得,然后由,展開利用均值不等式可得答案.【詳解】由圓可得標準方程為,因為圓關(guān)于直線對稱,該直線經(jīng)過圓心,即,,,當且僅當,即時取等號,故選:C.8、C【解析】利用向量法判斷平面與平面的位置關(guān)系.【詳解】因為平面,的法向量分別為,,所以,即不垂直,則,不垂直,因為,即即不平行,則,不平行,所以,相交但不垂直,故選:C9、B【解析】利用等比數(shù)列的基本量進行計算即可【詳解】設(shè)等比數(shù)列的公比為,則,所以故選:B10、C【解析】連結(jié),設(shè),則,,由可求出,進而可求出,得出橢圓方程.【詳解】由題意設(shè)橢圓的方程:,設(shè)左焦點為,連結(jié),由橢圓的對稱性易得四邊形為平行四邊形,由得,又,設(shè),則,,又,解得,又由,,解得,,,則橢圓的方程為.故選:C.【點睛】關(guān)鍵點睛:本題考查了橢圓的標準方程求解及橢圓的簡單幾何性質(zhì),在求解橢圓標準方程時,關(guān)鍵是求解基本量,,.11、C【解析】先求出等比數(shù)列的公比,再由等比數(shù)列的通項公式即可求解.【詳解】用表示這個數(shù)列,依題意,,則,,第四個數(shù)即.故選:C.12、B【解析】根據(jù)給定的雙曲線方程直接計算即可作答.【詳解】雙曲線的實半軸長,所以該雙曲線的實軸長為2.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)給定條件利用相互獨立事件、對立事件的概率公式計算作答.【詳解】依題意,這位考生至少得1個A對立事件為物理、政治科目考試都沒有得A,其概率為,所以這位考生至少得1個A的概率為.故答案為:14、【解析】根據(jù)導數(shù)的幾何意義可得,根據(jù)切點在切線上可得.【詳解】因為切線的斜率為,所以,又切點在切線上,所以,所以,所以.故答案為:.15、0【解析】計算每兩個向量的數(shù)量積,判斷該兩個向量是否垂直,可得答案.【詳解】因為,,.所以中任意兩個向量都不垂直,即α,β,γ中任意兩個平面都不垂直故答案為:0.16、##【解析】由題意可知,點在平面內(nèi)的軌跡是以為焦點,直線為準線的拋物線,如圖在底面建立平面直角坐標系,求出拋物線方程,直線的方程,將直線向拋物線平移,恰好與拋物線相切時,切點為點,此時的面積最小,則三棱錐體積的最小【詳解】因為為面內(nèi)一點,且點到面的距離與到直線的距離相等,所以點在平面內(nèi)的軌跡是以為焦點,直線為準線的拋物線,如圖在底面,以所在的直線為軸,以的中垂線為軸建立平面直角坐標系,則,設(shè)拋物線方程為,則,得,所以拋物線方程為,,直線的方程為,即,設(shè)與直線平行且與拋物線相切的直線方程為,由,得,由,得,所以與拋物線相切的直線為,此時切點為,且的面積最小,因為點到直線的距離為,所以的面積的最小值為,所以三棱錐體積的最小值為,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)或;(2)一共2個,理由見解析;(3)答案見解析.【解析】(1)先求曲線的焦點,再求點的坐標,分焦點為左焦點或右焦點,求線段的方程;(2)分點在雙曲線或是橢圓的曲線上,結(jié)合條件,說明點的個數(shù);(3)首先設(shè)出直線和圓的方程,利用直線與圓相切,以及直線與曲線相交,分別表示,并計算得到的值.【詳解】(1)兩個曲線相同的焦點,,解得:,即雙曲線方程是,橢圓方程是,焦點坐標是,聯(lián)立兩個曲線,得,,即,當焦點是右焦點時,線段的方程當焦點時左焦點時,,,線段的方程(2),假設(shè)點在曲線上單調(diào)遞增∴所以點不可能在曲線上所以點只可能在曲線上,根據(jù)得可以得到當左焦點,,同樣這樣的使得不存在所以這樣的點一共2個(3)設(shè)直線方程,圓方程為直線與圓相切,所以,,根據(jù)得到補充說明:由于直線的曲線有兩個交點,受參數(shù)的影響,蘊含著如下關(guān)系,∵,當,存在,否則不存在這里可以不需討論,因為題目前假定直線與曲線有兩個交點的大前提,當共焦點時存在不存在.【點睛】關(guān)鍵點點睛:本題考查直線與橢圓和雙曲線相交的綜合應(yīng)用,本題的關(guān)鍵是曲線由橢圓和雙曲線構(gòu)成,所以研究曲線上的點時,需分兩種情況研究問題.18、(1)證明見解析(2)證明見解析【解析】(1)由題意可得,從而可證.(2)由題意可得平面,從而可得,由根據(jù)條件可得,從而可得平面,從而可得證.【小問1詳解】由分別為線段的中點.由中位線定理知,又平面,且平面,所以直線平面【小問2詳解】兩兩垂直,即,且所以平面,又平面,所以由,且分別為線段的中點,所以,因此根據(jù)線面垂直判定定理得平面,且平面所以平面平面.19、(1)的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為,(2)【解析】(1)求導可得,分析正負即得解;(2)轉(zhuǎn)化在上恒成立為,分析函數(shù)單調(diào)性,轉(zhuǎn)化為f(1)≤1f(-1)≤1,求解即可【小問1詳解】當時,令,解得,,當變化時,,的變化情況如下表:↘極小值↗極大值↘極小值↗所以的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為,【小問2詳解】由條件可知,從而恒成立當時,;當時,因此函數(shù)在上的最大值是與兩者中的較大者為使對任意的,不等式在上恒成立,當且僅當f(1)≤1f(-1)≤1即在上恒成立所以,因此滿足條件的的取值范圍是20、(1)(2)【解析】(1)以為坐標原點,、、所在直線分別為、、軸建立空間直角坐標系,利用空間向量法可求得直線與平面所成角的正弦值;(2)求出平面的法向量,利用空間向量法可求得到平面的距離.【小問1詳解】解:以為坐標原點,、、所在直線分別為、、軸建立如下圖所示的坐標系則、、、、、、,所以,,設(shè)平面的一個法向量為,,,由,取,可得,所以,,直線與平面所成角的正弦為小問2詳解】解:設(shè)平面的一個法向量,,,由,即,令,得,,所以點到平面的距離為即到平面的距離為21、(1);(2)證明見解析.【解析】(1)根據(jù)離心率為可得,把代入方程可得,又,解方程組即可求得方程;(2)設(shè)直線的方程為,整理方程組,求得,及參數(shù)的范圍,由斜率公式表示出,結(jié)合直線方程和韋達定理整理即可得到定值.試題解析:(1)由題意,可得,代入得,又,解得,,所以橢圓的方程為.(2)證明:設(shè)直線的方程為,又,,三點不重合,∴,設(shè),,由得,所以,解得,,①,②設(shè)直線,的斜率分別為,,則(),分別將①②式代入(),得,所以,即直線,的斜率之和為定值考點:橢圓的標準方程及直線與橢圓的位置關(guān)系.【方法點睛】本題主要考查了橢圓的標準方程及直線與橢圓的位置關(guān)系,考查了方程的思想和考試與運算能力,屬于中檔題.求橢圓方程通常用待定系數(shù)法,注意隱含條件;研究圓錐曲線中的定值問題,通常根據(jù)交點與方程組解得對應(yīng)性,設(shè)而不解,表示出待求定值的表達式,利用韋達定理代入整理,消去參數(shù)即可得到定值.22、(1)遞減區(qū)間是,單調(diào)遞增區(qū)間是,極小值(2)證明見解析(3)【解析】(1)對函數(shù)進行求導通分化簡,求出解得,在列出與在區(qū)間上的表格,即可得到答案.(2)由(1)知,在區(qū)間上的最小值為,因為存在零點,所以,從而.在對進行分類討論,再利用函數(shù)的單調(diào)性得出結(jié)論.(3)構(gòu)造函數(shù),在對進行求導,在對進行分情況討論,即可得的得到答案.【小問1詳解】函數(shù)的定義域為,,由解得與在區(qū)間上的情況如下:–↘↗所以,的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論