2024屆上海市張堰中學高二上數學期末監測試題含解析_第1頁
2024屆上海市張堰中學高二上數學期末監測試題含解析_第2頁
2024屆上海市張堰中學高二上數學期末監測試題含解析_第3頁
2024屆上海市張堰中學高二上數學期末監測試題含解析_第4頁
2024屆上海市張堰中學高二上數學期末監測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆上海市張堰中學高二上數學期末監測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線C:,焦點為F,點到在拋物線上,則()A.3 B.2C. D.2.已知三棱錐的各頂點都在同一球面上,且平面,若該棱錐的體積為,,,,則此球的表面積等于()A. B.C. D.3.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件4.已知是橢圓的左焦點,為橢圓上任意一點,點坐標為,則的最大值為()A. B.13C.3 D.55.過,兩點的直線的一個方向向量為,則()A.2 B.2C.1 D.16.若實數,滿足約束條件,則的最小值為()A.-3 B.-2C. D.17.某校高二年級統計了參加課外興趣小組的學生人數,每人只參加一類,數據如下表:學科類別文學新聞經濟政治人數400300100200若從參加課外興趣小組的學生中采用分層抽樣的方法抽取50名參加學習需求的問卷調查,則從文學、新聞、經濟、政治四類興趣小組中抽取的學生人數分別為()A.15,20,10,5 B.15,20,5,10C.20,15,10,5 D.20,15,5,108.已知命題若直線與拋物線有且僅有一個公共點,則直線與拋物線相切,命題若,則方程表示橢圓.下列命題是真命題的是A. B.C. D.9.若數列滿足,則的值為()A.2 B.C. D.10.命題的否定是()A. B.C. D.11.“”是“直線:與直線:平行”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件12.直線與圓相切,則實數等于()A.或 B.或C.3或5 D.5或3二、填空題:本題共4小題,每小題5分,共20分。13.已知,,,,使得成立,則實數a的取值范圍是___________.14.若數列滿足,,則__________15.已知函數,則________.16.如圖,已知,分別是橢圓的左、右焦點,現以為圓心作一個圓恰好經過橢圓的中心并且交橢圓于點,.若過點的直線是圓的切線,則橢圓的離心率為_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓C的方程為.(1)直線l1過點P(3,1),傾斜角為45°,且與圓C交于A,B兩點,求AB的長;(2)求過點P(3,1)且與圓C相切的直線l2的方程.18.(12分)已知,兩地的距離是.根據交通法規,,兩地之間的公路車速(單位:)應滿足.假設油價是7元/,以的速度行駛時,汽車的耗油率為,當車速為時,汽車每小時耗油,司機每小時的工資是91元.(1)求的值;(2)如果不考慮其他費用,當車速是多少時,這次行車的總費用最低?19.(12分)已知等差數列{an}的前n項和為Sn,數列{bn}滿足:點(n,bn)在曲線y=上,a1=b4,___,數列{}的前n項和為Tn從①S4=20,②S3=2a3,③3a3﹣a5=b2這三個條件中任選一個,補充到上面問題的橫線上并作答(1)求數列{an},{bn}的通項公式;(2)是否存在正整數k,使得Tk>,且bk>?若存在,求出滿足題意的k值;若不存在,請說明理由20.(12分)某學校一航模小組進行飛機模型飛行高度實驗,飛機模型在第一分鐘時間內上升了米高度.若通過動力控制系統,可使飛機模型在以后的每一分鐘上升的高度都是它在前一分鐘上升高度的(1)在此動力控制系統下,該飛機模型在第三分鐘內上升的高度是多少米?(2)這個飛機模型上升的最大高度能超過米嗎?如果能,求出從第幾分鐘開始高度超過米;如果不能,請說明理由21.(12分)已知a,b,c分別是△ABC的三個內角A,B,C所對的邊,且.(1)求C;(2)若D是BC的中點,,,求AB的長.22.(10分)如圖,四棱錐P—ABCD中,底面ABCD是邊長為的正方形E,F分別為PC,BD的中點,側面PAD⊥底面ABCD,且PA=PD=AD.(Ⅰ)求證:EF//平面PAD;(Ⅱ)求三棱錐C—PBD的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】利用拋物線的定義求解.【詳解】因為點在拋物線上,,解得,利用拋物線的定義知故選:D2、D【解析】由條件確定三棱錐的外接球的球心位置及球的半徑,再利用球的表面積公式求外接球的表面積.【詳解】由已知,,,可得三棱錐的底面是直角三角形,,由平面可得就是三棱錐外接球的直徑,,,即,則,故三棱錐外接球的半徑為,所以三棱錐外接球的表面積為故選:D.【點睛】與球有關的組合體問題,一種是內切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關元素間的數量關系,并作出合適的截面圖,如球內切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.3、A【解析】由,結合基本不等式可得,由此可得,由此說明“”是“”的充分條件,再通過舉反例說明“”不是“”的必要條件,由此確定正確選項.【詳解】∵,∴(當且僅當時等號成立),(當且僅當時等號成立),∴(當且僅當時等號成立),若,則,∴,所以“”是“”的充分條件,當時,,此時,∴“”不是“”的必要條件,∴“”是“”的充分不必要條件,故選:A.4、B【解析】利用橢圓的定義求解.【詳解】如圖所示:,故選:B5、C【解析】應用向量的坐標表示求的坐標,由且列方程求y值.【詳解】由題設,,則且,所以,即,可得.故選:C6、B【解析】先畫出可行域,由,作出直線向下平移過點A時,取得最小值,然后求出點A的坐標,代入目標函數中可求得答案【詳解】由題可得其可行域為如圖,l:,當經過點A時,取到最小值,由,得,即,所以的最小值為故選:B7、D【解析】利用分層抽樣的等比例性質求抽取的樣本中所含各小組的人數.【詳解】根據分層抽樣的等比例性質知:文學小組抽取人數為人;新聞小組抽取人數為人;經濟小組抽取人數為人;政治小組抽取人數為人;故選:D.8、B【解析】若直線與拋物線的對稱軸平行,滿足條件,此時直線與拋物線相交,可判斷命題為假;當時,,命題為真,根據復合命題的真假關系,即可得出結論.【詳解】若直線與拋物線的對稱軸平行,直線與拋物線只有一個交點,直線與拋物不相切,可得命題是假命題,當時,,方程表示橢圓命題是真命題,則是真命題.故選:B.【點睛】本題考查復合命題真假的判斷,屬于基礎題.9、C【解析】通過列舉得到數列具有周期性,,所以.詳解】,同理可得:,可得,則.故選:C.10、C【解析】根據含全稱量詞命題的否定可寫出結果.【詳解】全稱命題的否定是特稱命題,所以命題的否定是.故選:C11、C【解析】根據兩直線平行求得的值,由此確定充分、必要條件.【詳解】由于,所以,當時,兩直線重合,不符合題意,所以.所以“”是“直線:與直線:平行”的充要條件.故選:C12、C【解析】先求出圓的圓心和半徑,再利用圓心到直線的距離等于半徑列方程可求得結果【詳解】由,得,則圓心為,半徑為2,因為直線與圓相切,所以,得,解得或,故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由題可得,求導可得的單調性,將的最小值代入,即得.【詳解】∵,,使得成立,∴由,得,當時,,∴在區間上單調遞減,在區間上單調遞增,∴函數在區間上的最小值為又在上單調遞增,∴函數在區間上的最小值為,∴,即實數的取值范圍是故答案為:.14、7【解析】根據遞推公式,依次求得值.【詳解】依題意,由,可知,故答案為:715、2【解析】根據導數的計算法則計算即可.【詳解】∵,∴,∴∴.故答案為:2.16、##【解析】根據給定條件探求出橢圓長軸長與其焦距的關系即可計算作答.【詳解】設橢圓長軸長為,焦距為,即,依題意,,而直線是圓的切線,即,則有,又點在橢圓上,即,因此,,從而有,所以橢圓的離心率為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)x=3或【解析】(1)首先利用點斜式求出直線的方程,再利用點到直線的距離公式求出圓心到直線的距離,最后利用垂直定理、勾股定理計算可得;(2)依題意可得點在圓外,分直線的斜率存在與不存在兩種情況討論,當直線的斜率不存在直線得到直線方程,但直線的斜率存在時設直線方程為,利用點到直線的距離公式得到方程,解得,即可得解;【小問1詳解】解:根據題意,直線的方程為,即,則圓心到直線的距離為故;【小問2詳解】解:根據題意,點在圓外,分兩種情況討論:當直線的斜率不存在時,過點的直線方程是,此時與圓C:相切,滿足題意;當直線的斜率存在時,設直線方程為,即,直線與圓相切時,圓心到直線的距離為解得此時,直線的方程為,所以滿足條件的直線的方程是或.18、(1);(2).【解析】(1)根據題中給出的車速和油耗之間的關系式,結合已知條件,待定系數即可;(2)根據題意求得以行駛所用時間,構造費用關于的函數,利用導數研究其單調性和最值,即可求得結果.【小問1詳解】因為汽車以的速度行駛時,汽車的耗油率為,又當時,,解得.【小問2詳解】若汽車的行駛速度為,則從地到地所需用時,則這次行車的總費用,則,令,解得,則當,,單調遞減,即.故時,該次行車總費用最低.19、(1)條件選擇見解析;an=2n,bn=25﹣n.(2)不存在,理由見解析.【解析】(1)把點(n,bn)代入曲線y=可得到bn=25﹣n,進而求出a1,設等差數列{an}的公差為d,選①S4=20,利用等差數列的前n項和公式可求出d,從而得到an;若選②S3=2a3,利用等差數列的前n項和公式可求出d,從而得到an;若選③3a3﹣a5=b2,利用等差數列的通項公式公式可求出d,從而得到an;(2)由(1)可知Sn==n(1+n),=,再利用裂項相消法求出Tn=1﹣,不等式無解,即不存在正整數k,使得Tk>,且bk>【小問1詳解】解:∵點(n,bn)在曲線y=上,∴=25﹣n,∴a1=b4=25﹣4=2,設等差數列{an}的公差為d,若選①S4=20,則S4==20,解得d=2,∴an=2+2(n﹣1)=2n;若選②S3=2a3,則S3=a1+a2+a3=2a3,∴a1+a2=a3,∴2+2+d=2+2d,解得d=2,∴an=2+2(n﹣1)=2n;若選③3a3﹣a5=b2,則3(a1+2d)﹣(a1+4d)=25﹣2=8,∴2a1+2d=8,即2×2+2d=8,∴d=2,∴an=2+2(n﹣1)=2n;【小問2詳解】解:由(1)可知Sn===n(1+n),∴==,∴Tn=(1﹣)+()+……+()=1﹣,假設存在正整數k,使得Tk>,且bk>,∴,即,此不等式無解,∴不存在正整數k,使得Tk>,且bk>20、(1);(2)不能,理由見解析.【解析】(1)由題得每分鐘上升的高度構成等比數列,再利用等比數列的通項求解;(2)求出即得解.【小問1詳解】解:由題意,飛機模型每分鐘上升的高度構成,公比的等比數列,則米.即飛機模型在第三分鐘內上升的高度是米.【小問2詳解】解:不能超過米.依題意可得,所以這個飛機模型上升的最大高度不能超過米.21、(1)(2)【解析】(1)根據正弦定理化邊為角,結合三角變換可求答案;(2)根據余弦定理先求,再用余弦定理求解.【小問1詳解】∵,∴由正弦定理可得,∴,∴.∵,∴,即.∵,∴.【小問2詳解】設,則,即,解得或(舍去),∴.∵,∴.22、(1)見解析(2)【解析】本試題主要是考查了線面平行的判定和三棱錐體積的求解的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論