2023-2024學(xué)年江西省新余四中高二上數(shù)學(xué)期末檢測模擬試題含解析_第1頁
2023-2024學(xué)年江西省新余四中高二上數(shù)學(xué)期末檢測模擬試題含解析_第2頁
2023-2024學(xué)年江西省新余四中高二上數(shù)學(xué)期末檢測模擬試題含解析_第3頁
2023-2024學(xué)年江西省新余四中高二上數(shù)學(xué)期末檢測模擬試題含解析_第4頁
2023-2024學(xué)年江西省新余四中高二上數(shù)學(xué)期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年江西省新余四中高二上數(shù)學(xué)期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在長方體中,是線段上一點,且,若,則()A. B.C. D.2.如圖,兩個半徑為R的相交大圓,分別內(nèi)含一個半徑為r的同心小圓,且同心小圓均與另一個大圓外切.已知時,在兩相交大圓的區(qū)域內(nèi)隨機取一點,則該點取自兩大圓公共部分的概率為()A. B.C. D.3.圓與圓的位置關(guān)系是()A.外離 B.外切C.相交 D.內(nèi)切4.已知拋物線,過點與拋物線C有且只有一個交點的直線有()條A.0 B.1C.2 D.35.已知,是圓上的兩點,是直線上一點,若存在點,,,使得,則實數(shù)的取值范圍是()A. B.C. D.6.已知拋物線的焦點為,過點且傾斜角為銳角的直線與交于、兩點,過線段的中點且垂直于的直線與的準(zhǔn)線交于點,若,則的斜率為()A. B.C. D.7.已知隨機變量,,則的值為()A.0.24 B.0.26C.0.68 D.0.768.已知是拋物線的焦點,是拋物線的準(zhǔn)線,點,連接交拋物線于點,,則的面積為()A.4 B.9C. D.9.如圖,四面體-,是底面△的重心,,則()A B.C. D.10.已知函數(shù)在處的導(dǎo)數(shù)為,則()A. B.C. D.11.如圖是拋物線拱形橋,當(dāng)水面在時,拱頂離水面,水面寬,若水面上升,則水面寬是()(結(jié)果精確到)(參考數(shù)值:)A B.C. D.12.在棱長為4的正方體中,為的中點,點P在正方體各棱及表面上運動且滿足,則點P軌跡圍成的圖形的面積為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知滿足的雙曲線(a,b>0,c為半焦距)為黃金雙曲線,則黃金雙曲線的離心率為______14.曲線在點處的切線方程為_______.15.如圖所示的莖葉圖記錄了甲、乙兩組各5名工人某日的產(chǎn)量數(shù)據(jù)(單位:件).若這兩組數(shù)據(jù)的中位數(shù)相等,且平均值也相等,則x=_____________,y=_____________16.若直線的方向向量為,平面的一個法向量為,則直線與平面所成角的正弦值為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)的圖像在(為自然對數(shù)的底數(shù))處取得極值.(1)求實數(shù)的值;(2)若不等式在恒成立,求的取值范圍.18.(12分)各項都為正數(shù)的數(shù)列的前項和為,且滿足.(1)求數(shù)列的通項公式;(2)求;(3)設(shè),數(shù)列的前項和為,求使成立的的最小值.19.(12分)已知雙曲線中心在原點,離心率為2,一個焦點(1)求雙曲線方程;(2)設(shè)Q是雙曲線上一點,且過點F、Q的直線l與y軸交于點M,若,求直線l的方程20.(12分)已知函數(shù),且(1)求曲線在點處的切線方程;(2)求函數(shù)在區(qū)間上的最小值21.(12分)已知兩點(1)求以線段為直徑的圓C的方程;(2)在(1)中,求過M點的圓C的切線方程22.(10分)已知函數(shù)(1)討論的單調(diào)區(qū)間;(2)求在上的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】將利用、、表示,再利用空間向量的加法可得出關(guān)于、、的表達(dá)式,進(jìn)而可求得的值.【詳解】連接、,因,因為是線段上一點,且,則,因此,因此,.故選:A.2、C【解析】設(shè)D為線段AB的中點,求得,在中,可得.進(jìn)而求得兩大圓公共部分的面積為:,利用幾何概型計算即可得出結(jié)果.【詳解】如圖,設(shè)D為線段AB的中點,,在中,.兩大圓公共部分的面積為:,則該點取自兩大圓公共部分的概率為.故選:C.3、C【解析】利用圓心距與半徑的關(guān)系確定正確選項.【詳解】圓的圓心為,半徑為,圓的圓心為,半徑為,圓心距為,,所以兩圓相交.故選:C4、D【解析】設(shè)出過點與拋物線C只有一個公共點且斜率存在的直線方程,再與的方程聯(lián)立借助判別式計算、判斷作答.【詳解】拋物線的對稱軸為y軸,直線過點P且與y軸平行,它與拋物線C只有一個公共點,設(shè)過點與拋物線C只有一個公共點且斜率存在的直線方程為:,由消去y并整理得:,則,解得或,因此,過點與拋物線C相切的直線有兩條,相交且只有一個公共點的直線有一條,所以過點與拋物線C有且只有一個交點的直線有3條.故選:D5、B【解析】確定在以為直徑的圓上,,根據(jù)均值不等式得到圓上的點到的最大距離為,得到,解得答案.【詳解】,故在以為直徑的圓上,設(shè)中點為,則,圓上的點到的最大距離為,,當(dāng)時等號成立.直線到原點的距離為,故.故選:B.6、C【解析】設(shè)直線的方程為,其中,設(shè)點、、,將直線的方程與拋物線的方程聯(lián)立,列出韋達(dá)定理,求出、,根據(jù)條件可求得的值,即可得出直線的斜率.【詳解】拋物線的焦點為,設(shè)直線的方程為,其中,設(shè)點、、,聯(lián)立可得,,,所以,,,,直線的斜率為,則直線的斜率為,所以,,因為,則,因為,解得,因此,直線的斜率為.故選:C.7、A【解析】根據(jù)給定條件利用正態(tài)分布的對稱性計算作答.【詳解】因隨機變,,有P(ξ<4)=P(ξ≤4)=0.76,由正態(tài)分布的對稱性得:,所以的值為0.24.故選:A8、D【解析】根據(jù)題意求得拋物線的方程為和焦點為,由,得到為的中點,得到,代入拋物線方程,求得,進(jìn)而求得的面積.【詳解】由直線是拋物線的準(zhǔn)線,可得,即,所以拋物線的方程為,其焦點為,因為,可得可得三點共線,且為的中點,又因為,,所以,將點代入拋物線,可得,所以的面積為.故選:D.9、B【解析】根據(jù)空間向量的加減運算推出,進(jìn)而得出結(jié)果.【詳解】因為,所以,故選:B10、C【解析】利用導(dǎo)數(shù)的定義即可求出【詳解】故選:C11、C【解析】先建立直角坐標(biāo)系,設(shè)拋物線方程為x2=my,將點坐標(biāo)代入拋物線方程求出m,從而可得拋物線方程,再令y=代入拋物線方程求出x,即可得到答案【詳解】解:如圖建立直角坐標(biāo)系,設(shè)拋物線方程為x2=my,由題意,將代入x2=my,得m=,所以拋物線的方程為x2=,令y=,解得,所以水面寬度為2.24×817.9m故選:C12、A【解析】構(gòu)造輔助線,找到點P軌跡圍成的圖形為長方形,從而求出面積.【詳解】取的中點E,的中點F,連接BE,EF,AF,則由于為的中點,可得,所以∠CBE=∠ECN,從而∠BCN+∠CBE=∠BCN+∠ECN=90°,所以BE⊥CN,又EF⊥平面,平面,所以EF⊥CN,又因為BEEF=E,所以CN⊥平面ABEF,所以點P軌跡圍成的圖形為矩形ABEF,又,所以矩形ABEF面積為.故選:A二、填空題:本題共4小題,每小題5分,共20分。13、##【解析】根據(jù)題設(shè)及雙曲線離心率公式可得,結(jié)合雙曲線離心率的性質(zhì)即可求離心率.【詳解】由題設(shè),,整理得:,所以,而,故.故答案為:.14、.【解析】由求導(dǎo)公式求出導(dǎo)數(shù),再把代入求出切線的斜率,代入點式方程化為一般式即可.【詳解】由題意得,∴在點處的切線的斜率是,則在點處的切線方程是,即.【點睛】本題考查導(dǎo)數(shù)的幾何意義.注意區(qū)分“在某點處的切線”與“過某點的切線”,前者“某點”是切點,后者“某點”不一定是切點.15、①.3②.5【解析】根據(jù)莖葉圖進(jìn)行數(shù)據(jù)分析,列方程求出x、y.【詳解】由題意,甲組數(shù)據(jù)為56,62,65,70+x,74;乙組數(shù)據(jù)為59,61,67,60+y,78.要使兩組數(shù)據(jù)中位數(shù)相等,有65=60+y,所以y=5.又平均數(shù)相同,則,解得x=3.故答案為:3;5.16、【解析】根據(jù)空間向量夾角公式進(jìn)行求解即可.【詳解】設(shè)與的夾角為,直線與平面所成角為,所以,故答案為:三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由求得的值.(2)由分離常數(shù),通過構(gòu)造函數(shù)法,結(jié)合導(dǎo)數(shù)求得的取值范圍.【小問1詳解】因為,所以,因為函數(shù)的圖像在點處取得極值,所以,,經(jīng)檢驗,符合題意,所以;【小問2詳解】由(1)知,,所以在恒成立,即對任意恒成立.令,則.設(shè),易得是增函數(shù),所以,所以,所以函數(shù)在上為增函數(shù),則,所以.18、(1)(2)(3)【解析】(1)直接利用數(shù)列的遞推關(guān)系式,結(jié)合等差數(shù)列的定義,即可求得數(shù)列的通項公式;(2)化簡,結(jié)合裂項相消法求出數(shù)列的和;(3)利用分組法求得,結(jié)合,即可求得的最小值.【小問1詳解】解:因為各項都為正數(shù)的數(shù)列的前項和為,且滿足,當(dāng)時,解得;當(dāng)時,;兩式相減可得,整理得(常數(shù)),故數(shù)列是以2為首項,2為公差的等差數(shù)列;所以.【小問2詳解】解:由,可得,所以,所以.【小問3詳解】解:由,可得,所以當(dāng)為偶數(shù)時,,因為,且為偶數(shù),所以的最小值為48;當(dāng)為奇數(shù)時,,不存在最小的值,故當(dāng)為48時,滿足條件.19、(1)(2)或【解析】(1)依題意設(shè)所求的雙曲線方程為,則,再根據(jù)離心率求出,即可求出,從而得到雙曲線方程;(2)依題意可得直線的斜率存在,設(shè),即可得到的坐標(biāo),依題意可得或,分兩種情況分別求出的坐標(biāo),再根據(jù)的雙曲線上,代入曲線方程,即可求出,即可得解;【小問1詳解】解:設(shè)所求的雙曲線方程為(,),則,,∴,又則,∴所求的雙曲線方程為【小問2詳解】解:∵直線l與y軸相交于M且過焦點,∴l(xiāng)的斜率一定存在,則設(shè).令得,∵且M、Q、F共線于l,∴或當(dāng)時,,,∴,∵Q在雙曲線上,∴,∴,當(dāng)時,,代入雙曲線可得:,∴綜上所求直線l的方程為:或20、(1)(2)【解析】(1)由題意,求出的值,然后根據(jù)導(dǎo)數(shù)的幾何意義即可求解;(2)根據(jù)導(dǎo)數(shù)與函數(shù)單調(diào)性關(guān)系,判斷函數(shù)在區(qū)間上的單調(diào)性,從而即可求解.【小問1詳解】解:由題意,,因為,所以,解得,所以,,因為,,所以曲線在點處的切線方程為,即;【小問2詳解】解:因為,,所以時,,時,,所以在上單調(diào)遞減,在上單調(diào)遞增,所以,即函數(shù)在區(qū)間上的最小值為.21、(1);(2).【解析】(1)求出圓心和半徑即可得到答案;(2)根據(jù)題意先求出切線的斜率,進(jìn)而通過點斜式求出切線方程.【小問1詳解】由題意,圓心

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論