求解電場強度13種方法_第1頁
求解電場強度13種方法_第2頁
求解電場強度13種方法_第3頁
求解電場強度13種方法_第4頁
求解電場強度13種方法_第5頁
已閱讀5頁,還剩5頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

求解電場強度方法分類賞析一.必會的基本方法:運用電場強度定義式求解例1.質量為嘰電荷量為q的質點,在靜電力作用下以恒定速率#沿圓弧從A點運動到0點,,其速度方向改變的角度為&(弧度),力3弧長為S,求力8弧中點的場強化【解析】:質點在靜電力作用下做勻速圓周運動,則其所需的向心力由位于圓心處的點電荷產生電場力提供。由牛頓第二定律可得電場力IE匚。由幾何關系有“所以F=/T7—,根據電場強度的定義有二-二竺工。方向沿半徑方向,指向由sqqs場源電荷的電性來決定。運用電場強度與電場差關系和等分法求解例2(2012安徽卷).如圖1T所示,在平面直角坐標系中,有方向平行于坐標平面的勻強電場,其中坐標原點0處的電勢為01/,點A處的電勢為6V,點B處的電勢為3V,則電場強度的大小為AA.200V//?? B.200?/加C100V//?? D.1OOV3V/W一、 邱m)><cm) ■.4(6.0) y' T.41-ZL.j(cm)x(cm)一,號.

c(1)在勻強電場中兩點間的電勢差〃=Ed、d為兩點沿電場強度方向的距離。在一些非強電場中可以通過取微元或等效的方法來進行求解。(2若已知勻強電場三點電勢,則利用“等分法”找出等勢點,畫出等勢面,確定電場線,再由勻強電場的大小與電勢差的關系求解。運用“電場疊加原理”求解例3(2010海南)?如右圖2,M、N和P是以MN為直徑的半圈弧上的三點,0點為半圓弧的圓心AMOP=60°電荷量相等、符號相反的兩個點電荷分別置于M、N兩點,這時0點電場強度的大小為;;若將N點處的點電荷移至P則0點的場場強大小變為艮,坊與覽之比為BA.1:2B.2:1C.2:羽D.4』二?必備的特殊方法:運用平衡轉化法求解例4一金屬球原來不帶電,現沿球的直徑的延長線放置

一均勻帶電的細桿酈如圖3所示。金屬球上感應電荷產生的電場在球內直徑上日、b、c三點的場強大小分別為、任、E“H者相比( )A.最大B.丘最大C.E最大 D.£=Ef£c【解析】:導體處于靜電平衡時,其內部的電場強度處處為零,故在球內任意點,感應電荷所產生的電場強度應與帶電細桿側在該點產生的電場強度大小相等,方向相反。均勻帶電細桿側可看成是由無數點電荷組成的。4、C三點中,C點到各個點電荷的距離最近,即細桿在C點產生的場強最大,因此,球上感應電荷產生電場的場強C點最大。故正確選項為Co點評:求解感應電荷產生的電場在導體內部的場強,轉化為求解場電荷在導體內部的場強問題,即£惑二-£外(負號表示方向相反)。運用“對稱法”(又稱“鏡像法勺求解例5.(2013新課標I)如圖4,一半徑為R的圓盤上均勻分布著電荷量為Q的電荷,在垂直于圓盤且過圓心c的軸線上有a、b、d三個點,a和b、b和c、c和d間的距離均為R,在a點處有一電荷量為q(q>0)的固定點電荷已知b點處的場強為零,則d點處場強的大小為(k為靜電力常量)3q? 【解析】:點電荷3q? 【解析】:點電荷+g在b點場強為E\、薄板在b點場強為凰4b點場強為零是E與疊加引起的,且兩者在此處產生的電場強度大小相等,方向相反,大小二= As今q圖6故球心圖6故球心0處電勢為零。根據根據對稱性可知,均勻薄板在d處所形成的電場強度大小也為伐,方向水平向左;點電荷在d點場強砂^,方向水平向左。根據疊加原理可知,d點場升&亨知點評:對稱法是利用帶電體電荷分布具有對稱性,或帶電體產生的電場具有對稱性的特點來求合電場強度的方法。通常有中心對稱、軸對稱等。例7如圖6所示,在一個接地均勻導體球的右側P點距球心的距離為d,球半徑為R.o在P點放置一個電荷量為+g的點電荷。試求導體球感應電荷在P點的電場強度大小。析與解:如圖6所示,感應電荷在球上分布不均勻,靠近P一側較密,關于〃對稱,因此感應電荷的等效分布點在〃連線上一點P。設P 距離0為心導體球接地,電勢疊加原理可知,導體表面感應電荷總電荷量。在。點引起的電勢與點電荷g在0點引導起的電勢之和為零,即卑+里二0,即感應電荷量0二-4的同理,0與g在球面上任dRakQ kq意點引起的電勢疊加之后也為零,即 == y/R2-2Rrcosa+r—2Rdcosa+d,中a為球面上任意一點與0連線和〃的夾角,具有任意性。將0代入上式并進行數學變換后得QRrd-2%osa,由于對于任意a角,該式都成立,因此,廠滿

足的關系是廠=一O ,〃苛’、根據庫侖定律可知感應電荷與電荷g間的相互作用力F二koO=L一苛。根(d-r)2產嚴-q、產嚴-q、o據電場強度定義可知感應電荷在P點所產生的電場強度E=匚二q(d--R-)-運用“等效法”求解例6.(2013安徽卷)如圖5所示,平面是無窮大導體的表面,該導體充滿zvO的空間,z>0的空間為真空。將電荷為q的點電荷置于z軸上z二h處,則在xO),平面上會產生感應電荷。空間任意一點處的電場皆是由點電荷q和導體表面上的感應電荷共同激發的。已知靜電平衡時導體內部場強處處為零,則在z軸上z=-處的場強大小為(k為靜電力常2量)A沖.B.k槊 C.哼 D.k攀【解析】:求金屬板和點電荷產生的合場強,顯然用現在的公式直接求解比較困難。能否用中學所學的知識靈活地遷移而解決呢當然可以。由于xO):平面是無窮大導體的表面,電勢為0,而一對等量異號的電荷在其連線的中垂線上電勢也為0,因而可以聯想成圖6中所示的兩個等量異號電荷組成的靜電場等效替代原電場。根據電場疊加原理,容易求得Z=-點的場強,E=k務+ =k竺,故選項D正確。2 (驢異仆9/?--(T}點評:(1)等效法的實質在效果相同的情況下,利用問題中某些相似或相同效果進行知識遷移的解決問題方法,往往是用較簡單的因素代替較復雜的因素。(2)本題也可以用排除法求解.僅點電荷q在Z=-處產生的場強就是k其,而合場2 h強一定大于k其、符合的選項只有D正確。圖5 圖6例6如圖5(日)所示,距無限大金屬板正前方/處,有正點電荷G金屬板接地。求距金屬板d處e點的場強e(點電荷g與4連線垂直于金屬板)。(a)+q(6)圖5析與解:日點場強是點電荷g與帶電金屬板產生的場強的矢量和。畫出點電荷與平行金屬板間的電場線并分析其的疏密程度及彎曲特征,會發現其形狀與等量異種點電荷電場中的電場線分布相似,金屬板位于連線中垂線上,其電勢為零,設想金屬板左側與+g對稱處放點電荷-g,其效果與+g及金屬板間的電場效果相同。因此,在+g左側對稱地用等效替代金屬板,如圖5(6)(a)+q(6)圖5所示。所以,號虎電場強度〃巴□產。寸7運用“微元法”求解例7.(2006甘肅).ab是長為I的均勻帶電細桿,Pi、P2是位于ab所在直線上的兩點,位置如圖7所示.ab上電荷產生的靜電場在P,處的場強大小為&,在P2處的場強大小為E2.則以下說法正確的是( )A兩處的電場方向相同,E1>E2 B兩處的電場方向相反,E1>E2C兩處的電場方向相同,EKE2 D兩處的電場方向相反EKE2.fl【解析】:將均勻帶電細桿等分為很多段,每段可看作點電荷,由于細桿均勻帶電,我們取a關于P(的對稱點『,則&與『關于點的電場互相抵消,整個桿對于R點的電場,僅僅相對于『b部分對于P,的產生電場.而對于P卻是整個桿都對其有作用,所以,R點的場強大設細桿帶正電根據場的疊加,這些點電荷在P的合場強方向向左,在P?的合場強方向向右,且Ei<E2.故選D.點評:(1)因為只學過點電荷的電場或者勻強電場,而對于桿產生的電場卻沒有學過,因而需要將桿看成是由若干個點構成,再進行矢量合成.(2)微元法就是將研究對象分割成許多微小的單位,或從研究對象上選取某一篁微元”加以分析,找出每一個微元的性質與規律,然后通過累積求和的方式求出整體的性質與規律。嚴格的說,微分法是利用微積分的思想處理物理問題的一種思想方法例8如圖7(a)所示,一個半徑為/?的均勻帶電TOC\o"1-5"\h\z細圓環,總量為0。求圓壞在其軸線上與環心0距離、' ■心為廠處的P產生的場強。 一"一 尋,析與解:圓壞上的每一部分電荷在Q點都產生電??? ?(a)場,整個圓壞在P所建立電場的場強等于各 心..部分電荷所產生場強的疊加。如圖7⑴在圓環上取微元“其所帶電荷量〃眷/,在P點產生的場強:k'q_kQM尸+用一2欣(尸+用)整個圓環在P點產生的電場強度為所有微元產生的場強矢量和。根據對稱性原理可,所有微元在P點產生場強沿垂直于軸線方向的分量相互抵消,所以整個圓環在P點產生場中各微元產生的場強沿軸線方向分量之和,即kQM r kQr2欣(尸+用)—J尸+R‘J(k+R丁&運用“割補法〃求解彳例&如圖8所示,用長為L的金屬絲彎成半徑為r的圓弧,但在A、B之間留有寬度為d的間隙,且d遠遠小于r,將電量為Q的正電荷均為分布于金屬絲上,求圓心處的電場強度。【解析】:假設將這個圓環缺口補上,并且已補缺部分的電荷密度 —與原有缺口的壞體上的電荷密度一樣,這樣就形成一個電荷均勻分布的完整帶電壞,壞上處于同一直徑兩端的微小部分所帶電荷可視為兩個相應焉的點電荷,它們在圓心0處產生的電場疊加后合場強為零。根據對稱性可知,帶電小段,由題給條件可視為點電荷,它在圓心0處的場強Ex是 無廿可求的。若題中待求場強為比貝l]EME2=0o設原缺口環所帶電荷的線密度為q,p=Q/(2”-d)s則補上的那一小段金屬絲帶電量Q,=pd、在0處的場強E,=KQ'/r\由&+E?=0可得:E2=-Eh負號表示E?與匕反向,背向圓心向左。例9如圖8(a)所示,將表面均勻帶正電的半球,沿線分成兩部分,然后將這兩部分移開很遠的距離,設分開后的球表面仍均勻帶電。試比較/點與〉1〃點電場強度的大小。析與解:如圖8(6)所示,球冠上正電荷在Af點產生的電場強度為6、球層面上正電荷在/!〃點產生電場強度為球冠與球層兩部分不規則帶電體產生的電場強度,無法用所學公式直接進行計算或比較。于是,需要通過補償創造出一個可以運用已知規律進行比較(日) (人) (。)圖8在球層表面附著一個與原來完全相同的帶正電半球體,如圖8(c)所示,顯然由疊加原理可知,在中點產生電場強度若將球冠與補償后的球缺組成一個完整球體,則則均勻帶電球體內電場強度處處為零可知,與6大小相等,方向相反。由此可以判斷,球冠面電荷在/點產生的電場強度為大于球層面電荷在點產生電場強度6o

9運用機【值法”求解例9.如圖9所示,兩帶電量增色為+Q的點電荷相距2L,MN是兩電荷連線的中垂線,求MN上場強的最大值。【解析】:用極限分析法可知,兩電荷間的中點0處的場強為零,在中垂線MN處的無窮遠處電場也為零,所以MN上必有場強的最大值。最常規方法找出所求量的函數表達式,再求極值。點評:物理學中的極值問題可分為物理型和數學型兩類。物理型主要依據物理概念、定理、定律求解。數學型則是在根據物理規律列方程后,依靠數學中求極值的知識求解。本題屬于數學型極值法,對數學能力要求較高,求極值時要巧妙采用數學方法才能解得。W運用“極限法”求解例10(2012安徽卷)?如圖所示,半徑為R的均勻帶電圓形平板,單位面積帶電量為<7,其軸線上任意一點P(坐標為“)的電場強度可以由庫侖定律和電場強度的疊加原理求X出:E=2"kcr[i—— ],方向沿〃軸。現考慮單位面積帶電量為以的無限大均勻帶電平板,從其中間挖去一半徑為廠圓板,在Q處形成的場強為E=2族%。的圓版,如圖門-2所示。則圓孔軸線上任意一點Q(坐標為“的電場強度為事D.2心%—【解析1】:由題中信息可得單位面積帶電量為%無限大均勻帶電平板,可看成是RTo。的圓板,在Q處形成的場強為E=27rko。而挖去的半徑為r的圓板在Q點形成的場強為圖11-1 圖11-2F=2麻礙[1-^—幣],則帶電圓板z存〃〃在Q點““”場強為(廠+;r)E—E(廣+匕)正確選項:E—E(廣+匕)正確選項:A【解析2】:RTOO的圓板,在Q處形成的場強為E=27Tk%°當挖去圓板rTO時,坐標x處的場強應為E=2;rkb。,將r=0代入選項,只有A符合。點評:極限思維法是一種科學的思維方法,在物理學研究中有廣泛的應用。我們可以將該物理量或它的變化過程和現象外推到該區域內的極限情況(或極端值),使物理問題的本質迅速

暴露出來,再根據己知的經驗事實很快得出規律性的認識或正確的判斷。運用44圖像法”求解例行(2011北京理綜)靜電場方向平行于苗由,其電勢0隨。的分布可簡化為如圖12所示的折線,圖中血和媯已知量。一個帶負電的粒子在電場中以20為中心,沿X軸方向做周期性運動。已知該粒子質量為欣電量為其動能與電勢能之和為一力(O</1<Q0o)o忽略重力。求:(1)粒子所受電場力的大小。【解析】:(D由圖可知,0與d(或-d)兩點間的電勢差為4)。電場強度的大小電場力的大小F=qE=圖12圖12k二縱軸量的變化量/橫軸量的變化量。但對于不同的點評:物理圖線的斜率其大小為具體問題k的物理意義并不相同。描述電荷在電場中受到的電場力F與電量q關系的F-q圖像的斜率表示電場強度,同樣,電勢對電場方向位移圖像的斜率也表示場強。12.運用“類比法”求解例10如圖9(日)所示,〃是半徑為r的圓的一條直徑,該圓處于勻強電場中,電場強度為E.在圓周平面內,將一電荷量為q的帶正電小球從a點以相同的動能拋出,拋出方向不同時,小球會經過圓周上不同的點。在這些點中,到達c點時小球的動能最大。已知Zcab(日)圖 (d)=30。o若不計重力和空氣阻力,試求:(日)圖 (d)(1)電場的方向與弦力間的夾角。(2) 若小球在a點時初速度方向與電場方向垂直,則小球恰好落在c點時的動能為多大。析與解:(1)求解電場強度方向問題看起來簡單但有時是比較復雜而困難的。本題中,在勻強電場中,僅電場力做功,不計重力,則電勢能與動能之和保持不變。在兩個等勢面間電勢差最大,則動能變化量最大。因此,小球到達C點時小球的動能最大,則

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論