




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
一、填空:(2-1)25
-15
=5x4,且x?(1,2)4315x=x2
+1xfi
0+
f
(0+)
=
limxsin
3x
=0f
(0-)
=
f
(0)
=a\
f
(0+)
=
f
(0-)
=
f
(0)
a
=01、f
(x)=x5在1,2]上滿足L.Th,則x
=處處連續,則a
=2、f
(x)=
a
+
x2
x
£
0x
sin
3x
x
>
0x2
+1xxfi
0lim
sintx
=t
(利用1極限)\
f
(t)
=t2
f
'
(t)
=
2txxfi
03(1)若f
(t)
=
lim
sin
tx
t,則f
'
(t)
=
.(1xxfi
¥(2)若f
(t)
=
lim
t
1+2tx
,則f
'
(t)
=
.xxfi
¥lim(1+1
)2tx
=e2t
(利用e極限)\
f
(t)
=te2t
f
'
(t)
=e2t
+te2t
2=(2t
+1)e2t0可導極值點必為駐點:f
'(x
)=04(1)
f(x)在x=
x0處左右導存在且相等是f
'
(x
)存在的
條件.0可導 左右導數存在且相等f(x)在x=
x0處左右極限存在且相等是f
(x)在x0處連續的 條件.連續 左右極限存在且都等于函數值若f
(x)在x
=x0處可導且取得極值,則必有f
'
(x
)
=
.0
0'0
0h=
(a
-
b)
f
(x
)f
[
x
+ah+ -
f
[
x
+blimhfi
0(h)](h)]
h+若f
'
(x
)存在,a
,
b
?
R,則0Dx
f
[a+Dx+(Dx)2
]-
f
(a)
=5、設f
'(a)存在,則limDxfi
0Dxf
[a+Dx+(Dx)2
]-
f
(a)
=
f
'
(a)\
limDxfi
0x-0lim
f
(
x)-
f
(0)xfi
0二、選擇:xxfi
0=
lim
f
(
x)=lim(x2
+1)
(x2
+
n)xfi
0=
n!=
f
'
(0)1、f
(x)
=
x(x2
+1)(x2
+
2)(x2
+
n),則f
'
(0)
=
(
)A、0
B、n
C、n!
D、12、在(a,b)內,f
'
(x)
>
0,f
''
(x)
<
0,則f
(x)的圖像在(a,b)內(
)B、單減上凸
D、單增上凸A、單減上凹
C、單增上凹f
'
(x)
>
0
?,f
''(x)<0
上凸2\
lim
dy
=
1
?
0,1,¥Dxfi
0
Dx\dy與Dx同階20dy
=
f
'
(x
)Dx
=
1
Dx20
03、若f
'(x
)=1
,則Dx
fi
0時,f
(x)在x
處的B、同階無窮小
D、低階無窮小微分dy是Dx的(
)A、等價無窮小
C、高價無窮小1xcos'解:y
=
ex'cos1x,
則y
=
(
)4、設y
=ex2(-sin1)
(-
1
)x1xcos1
1
x2=
sin
eeex1x1x1x1xcos1
1
x2cos1x1xcos1x
1
x2cos1xD.
sin
eC.
sinsin
eB.
-A.
-sinx
?0
0
x
=0x
f
(x)解:
f
(0)=0\F(x)=x-0
xxfi
0
xfi
0
f
'
(0)
=limf
(x)-f
(0)
=limf
(x)
?0x\
limF(x)
=lim
f
(x)
=
f
'
(0)
?
f
(0)xfi
0
xfi
0\x
=0是F
(x)的可去間斷點x,f
(0)=0,f
'(0)?0,則
f
(x)
0
x
=0x
?05、F(x)=B、一類間斷點
D、是否連續不確定x
=0是F(x)的(
)A、連續點C、二類間斷點三、解答:只能用定義式討論導解:
f
(x)在R上可
f
(x)在x
=
0處可導
f
(x)在x
=0處ct在R上可導b
+ln(1+
x)
x
>
0x
£
0sinax1(1)確定a,b使f
(x)=\
f
(0+)
=
f
(0-)
=
f
(0)且f
'(0)=f
'(0)+
-\
f
(0+)
=
f
(0-)
=
f
(0)
b
=0(1)+x=
lim
=
f
(0)xfi
0+
f
(x)-
f
(0)
ln(1+x)+b
'x-0limxfi
0+
f
(0+)
=
b,
f
(0-)
=
f
(0)
=
0'-=a
=
f
(0)sinax
x=
limxfi
0+
f
(x)-
f(0)
x-0limxfi
0-''(2)xb+ln(1+x)+
-=
f
(0)
a
=limxfi
0\
f
(0)聯解(1)(2)得:a
=1,b
=0.\f
'(0)=0
f
(x)在x
=0處可導\f
(x)在x
=0處ct2210
x
x
|x|x
sin
+(2)討論f
(x)=x
=
0在ln(1+
x
)
x
?
0分段點處的連續性和可導性解:
f
(0+)=f
(0-)=f
(0)=0x-0
xxfi
0–
xfi
0–
xlim
f
(x)-
f
(0)
=
lim
1
[x2
sin1
–ln(1+x2
)]12=0ln(1+x
)xxxfi
0–
xfi
0–=
lim
xsin
–
lim等價+洛必達+恒變+等價xfi
0
x2
ln(1+x)x3xfi
02(1)
lim
tan
x-x
=lim
tan
x-x3x2xfi
02=lim
sec
x-13x2xfi
02=lim
tan
xxfi
0
3x22=lim
x3=
1x2(2)lim
1+x+
1-x-2xfi
02x
1
+
-1xfi
0=lim
2
1+x
2
1-x
x
1
-
11+x
1-x4
xfi
0=
1
limx4
xfi
0
1
(
1-x-
1+x)=
1
lim
1-x2x4
xfi
0=
1
lim
1-x-
1+x2
1-x
2
1+x4
xfi
04=
1
lim(-
1
-
1
)
=-1~
x4法1:
x
fi
0時,arctan
x412x4xfi
0x2\
原式=lime
+2cosx-3
==
74次用洛必達法則2arctan
x4(3)lim
ex
+2cos
x-3xfi
0~
x42!2ex=1+
x2
+
1
(x2
)2
+(x4
)cos
x
=1-
1
x2
+
1
x4
+(x4
)2!
4!7124
4
7
12
=x4xfi
0x
+(x
)\原式==limarctan
x42(3)lim
ex
+2cos
x-3xfi
0法2:
x
fi
0時,arctanx4
1
ln
x(4)
lim(cot
x)xfi
0+xfi
0+
x2
sin
x+
lim
x-sin
xlncotx
ln
xA
=exp[lim
]xfi
0+]21
x-csc
x
cotx=exp[limxfi
0+]21
xtan
x
sin
x=exp[-
limxfi
0+2-1=
exp[-
lim
]
=
ex
xxfi
0+
1
xx3x-sinxB
=
limxfi
0+3x21-cosx=
limxfi
0+16
2
=
lim
=1
x2xfi
0+
3x2=
A+B16-1=e
+
y(0)=0且3(1)已知y
=y(x)由ex+y
-xy
=1確定,求y''(0).解:ex+y
-xy
=1ex+y
(1+y'
)-y
-xy'
=0(1)代x
=0,y
=0入(1)式得:e0+0[1+
y'
(0)]-0-0y'
(0)
=0\
y'
(0)
=-1ex+y
(1+
y')-y
-xy'
=0\
ex+y
(1+y'
)2
+ex+y
y''
-y'
-(y'
+xy''
)
=0(2)代x
=0,y
=0,y'=-1入(2)式得:e0+0(1-1)2
+e0+0
y''
(0)-(-1)-[-1+0y''
(0)]=0\
y''
(0)
=-2x-2
x-2xfi
¥
xfi
¥解:lim(
x+5
)2x+3
=lim(1+
7
)2x+3
=e14\
f
(x)
=
e14
ln(x
-
2014)\
f
(n)
(x)
=
e14
(-1)n-1(n
-1)!(x
-2014)-n(2)
f
(x)
=ln(x
-2014),2x+3
x+5x-2lim(
)xfi
¥(n)求f
(x)(3)x4
-xy
+1
y4
=1
,求y'2
2
(0,1)2(0,1)=
1
y'4(0,1)=-1
y''解:4x3
-y
-xy'+2y3
y'=0\
12x2
-y'
-y'
-xy''
+6y2
y'
y'
+2y3
y''
=0解1:x
=1
t
=1t
xx\
y
=ln
1
+3x2(-
1
)
=-
1\
dy
=
1
dx
1
x
xx2
x2dx22
1
\
d
y
=
-(-
1
)
=d
2
ytdx2x
=
1
y
=
3
+
ln
t4、已知:,求t2t
dt解2:x
=1
dx
=-
1y
=
lnt
+
3
dy
=
1dt
tdx
tt
2\
y'
=
dy
=
1
(-
1
)
=
-t'2t
2dxdx2d
y
dy=
(-1)
(-
1
)
=
t
2\
==
-1,dt'
dyt2dtdx
=-
15、求f
(x)=x3
+3x2
-24x
-32的極值解:
f
'(x)=3x2
+6x
-24\f
'(x)=0
x
=-4,x
=2且無奇點1
2f
''
(x)
=6x
+6
f
''
(x
)
<0,
f
''
(x
)
>01
2\f極大(-4)=48,f極小(2)=-60x-axfi
axfi
a=lim[2j(x)
+(x
-a)j'
(x)]
=
2j(a)xfi
a
f
(x)
=(x
-a)2j(x)\
f
'
(x)
=
2(x
-a)j(x)
+(x
-a)2j'
(x)
f
'
(a)
=0'
'\
f
''
(a)
=lim
f
(x)-
f
(a)6、設j'(x)ct,f
(x)=(x
-a)2j(x),求f
''(a)解:j'
(x)ct
\
limj'
(x)
=j'
(a)四、證明:Pf:令f
(x)=sin
x
+tan
x
-2x2
f
(0)=0且"x?
(0,p
),cosx?
(0,1)f
'
(x)
=
cos
x
+sec2
x
-
2cos2
x=cosx
+
1
-221(1)證明:x
?
(0,p
)時,sin
x
+tan
x
>2x2即"x
?
(0,p
),sin
x
+tan
x
>2x\
f
(x)
?
f
(x)
>
f
(0)
=0cos2
xf
'
(x)
=cosx
+
1
-2cos2
x>cos2
x
+
1
-2cos2
x?2
cos2
x
1
-2
=02f
'
(x)
=
g(x)
=cosx
-1+
1
x23!即"x
>
0,sin
x
>
x
-
1
x362
f
(x)
?:f
(x)
=sinx
-x
+
1
x3
>
f
(0)
=0
g(x)
?:g(x)
=cosx
-1+
1
x2
>
g(0)
=0g'
(x)
=
h(x)
=-sinx
+
xh'
(x)
=-cosx
+1>0
h(x)
?:h(x)
=-sinx
+
x
>
h(0)
=06證:令f
(x)=sin
x
-x
+1
x3
,則x
>0時3!(2)證明:"x
>0,sin
x
>x
-
1
x3即
1
[xf
'(x)-f
(x)]=0Pf:令F(x)=
f
(x)
,則xF(x)?
C[a,b]
D(a,b)且F(a)=F(b)=0\$x?
(a,b)使F'(x)=0x2
xf
'
(x)
=
f
(x)2(1)設b
>a
>0,f
(x)?
C[a,b]
D(a,b),f
(a)=f
(b)=0證明:$x?
(a,b)使x
f
'(x)=f
(x)(2)
f
(x)?
C[0,b]
D(0,b),
f
(b)
=
0
$x?
(0,b)st:f
(x)
+xf
'
(x)
=
0證:令F(x)=xf
(x),則F(x)?
C[0,b]
D(0,b)且F(0)=F(b)=0F'
(x)
=
0由Rolle.Th:$x?
(0,b)使即:f
(x)+xf
'(x)=03(1)
f
(x)?
C[a,b]
D(2)
(a,b),a
<
x
<
x
<
x
<b,1
2
3f
(x1)
=
f
(x2
)
=
f
(x3)求證:$x?
(a,b)st:f
''(x)=0Pf:
f
(x)
?
C[a,
b]
D(a,
b)[x1
,
x2
] [a,
b],[x2
,
x3
] [a,
b]\
f
(x)
?
C[x1,
x2
]
D(x1,
x2
)f
(x)
?
C[x2
,
x3
]
D(x2
,
x3
)\
f
'
(x)
?
C[x
,x
]
D(x
,x
)1
2
1
2[a,
b][x1,x2
](a,b)使由Rolle.Th:$x?
(x1,x2
)f
''
(x)
=
0由R.Th:$x1
?
(x1,x2
),x2
?
(x2
,x3
)使f
'
(x
)
=
f
'
(x
)
=
01
2
f
'
(x)
?
C[a,
b]
D(a,
b)(2)f
(x)?
C[a,b]
D(2)(a,b),連接A(a,f
(a)),B(b,f
(b))的線段交y
=f
(x)于C(c,f
(c)),a
<c
<b,求證:$x?
(a,b)st:f
''(x)=0Pf:
f
(x)
?
C[a,
b]
D(a,
b)[a,
c] [a,
b],[c,
b] [a,
b]\
f
(x)
?
C[a,
c]
D(a,
c)f
(x)
?
C[c,
b]
D(c,
b)1
2
1
2\
f
'
(x)
?
C[x
,x
]
D(x
,x
)[a,
b][x1,x2
](a,b)使由Rolle.Th:$x?
(x1,x2
)f
''
(x)
=
0由L.Th:$x1
?
(a,c),x2
?
(c,b)使1
2
AB
f
'
(x)
?
C[a,
b]
D(a,
b)f
'
(x
)
=
f
'
(x
)
=
k4、證明至少存在一點x
?
(1,e)使sin1
=coslnx成立構造函數用相關定理注意寫出定理所需條件令f
(x)=sin1-cosln
x,在[1,e]上用零點Th令f
(x)=sinln
x
-ln
xsin1,在[1,e]上用洛爾Th令f
(x)=sinln
x,g(x)=ln
x,在[1,e]上用柯西Th令f
(x)
=cosln
x,
在[1,
e]上用介值Th(1)令f
(x)=sin1-cosln
x,在[1,e]上用零點ThPf:令f
(x)=sin1-cosln
x,則f
(x)?
C[1,e],且:f
(1)
=
sin1-1<
0,
f
(e)
=
sin1-cos1
>
0\由零點Th:$x
?
(1,e)使f
(x)=0即:sin1-coslnx
=0\$x
?
(1,e)使sin1
=cosln
x.#sin1
=
01
-
1x
x即:coslnx\$x
?
(1,e)使sin1
=cosln
x.#(2)令f
(x)=sinln
x
-ln
xsin1,在[1,e]上用洛爾ThPf:令f
(x)=sinln
x
-sin1
ln
x,則f
(x)?
C[1,e]
D(1,e),且:f
(1)
=
f
(e)
=
0\由洛爾Th:$x
?
(1,e)使f
'(x)=0x"
x
?
(1,
e),
g
'
(x)
=
1
?
0g'
(x)\
由Cauchy
Th:$x
?
(1,
e)使
g
(e)-g
(1)'
f
(e)-
f
(1)
=
f
(x)x
1x1
coslnx1-0sin1-sin0即:
=\$x
?
(1,e)使sin1
=cosln
x.#(3)令f
(x)=sinln
x,g(x)=ln
x,在[1,e]上用柯西ThPf:令f
(x)=sinln
x,g(x)=ln
x,則f
(x)?
C[1,e]
D(1,e),g(x)?
C[1,e]
D(1,e),且(4)令f
(x)=cosln
x,在[1,e]上用介值ThPf:令f
(x)=cosln
x,則f
(x)?
C[1,e],且:f
(1)
=1,
f
(e)
=cos1sin1?
(cos1,1)\由介值Th:$x
?
(1,e)使f
(x)=sin1即:coslnx
=sin1\$x
?
(1,e)使sin1
=cosln
x.#*(5)令f
(x)=sin
x,g(x)=ln
x,f
(x)在[0,1]上用Lagrang
Th后g(x)在[1,e]上用介值Th2*(6)sin1
=coslnx
cos(k1p
+
p
-1)
=coslnx22k2p
+
k1p
+
p
-1
=lnx取k1
=k2
=0,令g(x)=ln
x,在[1,e]上用介值Th解:據周期性有:f
(6)=f
(1),f
'(6)=f
'(1).
f
(x)連續且x
?
U
(0,d)時有:f
(1+sin
x)
-3
f
(1-sin
x)
=
8x
+(x)\
lim[
f
(1+sin
x)
-3
f
(1-sin
x)]xfi
0=
lim[8x
+(x)]xfi
0\
-2
f
(1)
=0
f
(1)
=0五、練習:1、教材P126總習題二14
f
'(1)存在且x
fi
0時有sin
x
~
xsinx
xsinxfi
0
xfi
0\
A=
lim
f
(1+sinx)-3
f
(1-sinx)
=lim8x+(x)
=8hhfi
0而A
=lim
f
(1+h)-3
f
(1-h)h
-hhfi
0
-hfi
0=lim
f
(1+h)-
f
(1)
+3
lim
f
(1-h)-
f
(1)f
(1)
=0=
f
'
(1)
+3
f
'
(1)
=4
f
'
(1)\
f
'
(1)
=
2\
f
(6)
=
f
(1)
=
0,
f
'
(6)
=
f
'
(1)
=
2.\所求切線l:y
-0
=2(x
-6)即:2
x
-y
-12
=0注1、求f(1):利用f
(x)連續且
x
fi
0時f
(1–sin
x)fi
f
(1).注2、求f
'(1):用到導數定義式中非零無窮小h的任意性2、教材P183總習題三19Pf
:令x0
=
(1-t)x1
+tx2
,則x0
?
(a,b)由Taylor公式:$x1,x2
?
(a,b)使f
(x
)
=
f
(x
)
+
f
'(x
)(x
-x
)
+1
f
'
(x
)(x
-x
)21
0
0
1
0
2
1
1
0f
(x
)
=
f
(x
)
+
f
'
(x
)(x
-x
)
+1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學數學新年活動方案
- 室內團建整體活動方案
- 宣傳團史活動方案
- 室內秋游活動方案
- 小區攤位活動方案
- 宗親參觀訪問活動方案
- 小學廚藝大賽活動方案
- 宜賓奶茶活動策劃方案
- 家裝公司小定金活動方案
- 寒假系列活動方案
- 東方經(已經排好版)
- DB14-T 3225-2025 煤矸石生態回填環境保護技術規范
- 福建省廈門市2022-2023學年高二下學期質量檢測生物試題(解析版)
- 2025年燃氣輪機值班員職業技能知識考試題庫
- 2025年山西焦煤西山煤電集團公司招聘筆試參考題庫含答案解析
- 催收合規培訓
- 湖南中醫藥大學湘杏學院《民族地區社會工作》2023-2024學年第一學期期末試卷
- 重力式混凝土擋土墻施工方案
- 2024年盤扣式腳手架安裝服務合同一
- 出版策劃實務知到智慧樹章節測試課后答案2024年秋吉林師范大學
- 電梯工程師述職報告
評論
0/150
提交評論