高數上3章中期復習題_第1頁
高數上3章中期復習題_第2頁
高數上3章中期復習題_第3頁
高數上3章中期復習題_第4頁
高數上3章中期復習題_第5頁
已閱讀5頁,還剩42頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

一、填空:(2-1)25

-15

=5x4,且x?(1,2)4315x=x2

+1xfi

0+

f

(0+)

=

limxsin

3x

=0f

(0-)

=

f

(0)

=a\

f

(0+)

=

f

(0-)

=

f

(0)

a

=01、f

(x)=x5在1,2]上滿足L.Th,則x

=處處連續,則a

=2、f

(x)=

a

+

x2

x

0x

sin

3x

x

>

0x2

+1xxfi

0lim

sintx

=t

(利用1極限)\

f

(t)

=t2

f

'

(t)

=

2txxfi

03(1)若f

(t)

=

lim

sin

tx

t,則f

'

(t)

=

.(1xxfi

¥(2)若f

(t)

=

lim

t

1+2tx

,則f

'

(t)

=

.xxfi

¥lim(1+1

)2tx

=e2t

(利用e極限)\

f

(t)

=te2t

f

'

(t)

=e2t

+te2t

2=(2t

+1)e2t0可導極值點必為駐點:f

'(x

)=04(1)

f(x)在x=

x0處左右導存在且相等是f

'

(x

)存在的

條件.0可導 左右導數存在且相等f(x)在x=

x0處左右極限存在且相等是f

(x)在x0處連續的 條件.連續 左右極限存在且都等于函數值若f

(x)在x

=x0處可導且取得極值,則必有f

'

(x

)

=

.0

0'0

0h=

(a

-

b)

f

(x

)f

[

x

+ah+ -

f

[

x

+blimhfi

0(h)](h)]

h+若f

'

(x

)存在,a

,

b

?

R,則0Dx

f

[a+Dx+(Dx)2

]-

f

(a)

=5、設f

'(a)存在,則limDxfi

0Dxf

[a+Dx+(Dx)2

]-

f

(a)

=

f

'

(a)\

limDxfi

0x-0lim

f

(

x)-

f

(0)xfi

0二、選擇:xxfi

0=

lim

f

(

x)=lim(x2

+1)

(x2

+

n)xfi

0=

n!=

f

'

(0)1、f

(x)

=

x(x2

+1)(x2

+

2)(x2

+

n),則f

'

(0)

=

(

)A、0

B、n

C、n!

D、12、在(a,b)內,f

'

(x)

>

0,f

''

(x)

<

0,則f

(x)的圖像在(a,b)內(

)B、單減上凸

D、單增上凸A、單減上凹

C、單增上凹f

'

(x)

>

0

?,f

''(x)<0

上凸2\

lim

dy

=

1

?

0,1,¥Dxfi

0

Dx\dy與Dx同階20dy

=

f

'

(x

)Dx

=

1

Dx20

03、若f

'(x

)=1

,則Dx

fi

0時,f

(x)在x

處的B、同階無窮小

D、低階無窮小微分dy是Dx的(

)A、等價無窮小

C、高價無窮小1xcos'解:y

=

ex'cos1x,

則y

=

(

)4、設y

=ex2(-sin1)

(-

1

)x1xcos1

1

x2=

sin

eeex1x1x1x1xcos1

1

x2cos1x1xcos1x

1

x2cos1xD.

sin

eC.

sinsin

eB.

-A.

-sinx

?0

0

x

=0x

f

(x)解:

f

(0)=0\F(x)=x-0

xxfi

0

xfi

0

f

'

(0)

=limf

(x)-f

(0)

=limf

(x)

?0x\

limF(x)

=lim

f

(x)

=

f

'

(0)

?

f

(0)xfi

0

xfi

0\x

=0是F

(x)的可去間斷點x,f

(0)=0,f

'(0)?0,則

f

(x)

0

x

=0x

?05、F(x)=B、一類間斷點

D、是否連續不確定x

=0是F(x)的(

)A、連續點C、二類間斷點三、解答:只能用定義式討論導解:

f

(x)在R上可

f

(x)在x

=

0處可導

f

(x)在x

=0處ct在R上可導b

+ln(1+

x)

x

>

0x

0sinax1(1)確定a,b使f

(x)=\

f

(0+)

=

f

(0-)

=

f

(0)且f

'(0)=f

'(0)+

-\

f

(0+)

=

f

(0-)

=

f

(0)

b

=0(1)+x=

lim

=

f

(0)xfi

0+

f

(x)-

f

(0)

ln(1+x)+b

'x-0limxfi

0+

f

(0+)

=

b,

f

(0-)

=

f

(0)

=

0'-=a

=

f

(0)sinax

x=

limxfi

0+

f

(x)-

f(0)

x-0limxfi

0-''(2)xb+ln(1+x)+

-=

f

(0)

a

=limxfi

0\

f

(0)聯解(1)(2)得:a

=1,b

=0.\f

'(0)=0

f

(x)在x

=0處可導\f

(x)在x

=0處ct2210

x

x

|x|x

sin

+(2)討論f

(x)=x

=

0在ln(1+

x

)

x

?

0分段點處的連續性和可導性解:

f

(0+)=f

(0-)=f

(0)=0x-0

xxfi

0–

xfi

0–

xlim

f

(x)-

f

(0)

=

lim

1

[x2

sin1

–ln(1+x2

)]12=0ln(1+x

)xxxfi

0–

xfi

0–=

lim

xsin

lim等價+洛必達+恒變+等價xfi

0

x2

ln(1+x)x3xfi

02(1)

lim

tan

x-x

=lim

tan

x-x3x2xfi

02=lim

sec

x-13x2xfi

02=lim

tan

xxfi

0

3x22=lim

x3=

1x2(2)lim

1+x+

1-x-2xfi

02x

1

+

-1xfi

0=lim

2

1+x

2

1-x

x

1

-

11+x

1-x4

xfi

0=

1

limx4

xfi

0

1

(

1-x-

1+x)=

1

lim

1-x2x4

xfi

0=

1

lim

1-x-

1+x2

1-x

2

1+x4

xfi

04=

1

lim(-

1

-

1

)

=-1~

x4法1:

x

fi

0時,arctan

x412x4xfi

0x2\

原式=lime

+2cosx-3

==

74次用洛必達法則2arctan

x4(3)lim

ex

+2cos

x-3xfi

0~

x42!2ex=1+

x2

+

1

(x2

)2

+(x4

)cos

x

=1-

1

x2

+

1

x4

+(x4

)2!

4!7124

4

7

12

=x4xfi

0x

+(x

)\原式==limarctan

x42(3)lim

ex

+2cos

x-3xfi

0法2:

x

fi

0時,arctanx4

1

ln

x(4)

lim(cot

x)xfi

0+xfi

0+

x2

sin

x+

lim

x-sin

xlncotx

ln

xA

=exp[lim

]xfi

0+]21

x-csc

x

cotx=exp[limxfi

0+]21

xtan

x

sin

x=exp[-

limxfi

0+2-1=

exp[-

lim

]

=

ex

xxfi

0+

1

xx3x-sinxB

=

limxfi

0+3x21-cosx=

limxfi

0+16

2

=

lim

=1

x2xfi

0+

3x2=

A+B16-1=e

+

y(0)=0且3(1)已知y

=y(x)由ex+y

-xy

=1確定,求y''(0).解:ex+y

-xy

=1ex+y

(1+y'

)-y

-xy'

=0(1)代x

=0,y

=0入(1)式得:e0+0[1+

y'

(0)]-0-0y'

(0)

=0\

y'

(0)

=-1ex+y

(1+

y')-y

-xy'

=0\

ex+y

(1+y'

)2

+ex+y

y''

-y'

-(y'

+xy''

)

=0(2)代x

=0,y

=0,y'=-1入(2)式得:e0+0(1-1)2

+e0+0

y''

(0)-(-1)-[-1+0y''

(0)]=0\

y''

(0)

=-2x-2

x-2xfi

xfi

¥解:lim(

x+5

)2x+3

=lim(1+

7

)2x+3

=e14\

f

(x)

=

e14

ln(x

-

2014)\

f

(n)

(x)

=

e14

(-1)n-1(n

-1)!(x

-2014)-n(2)

f

(x)

=ln(x

-2014),2x+3

x+5x-2lim(

)xfi

¥(n)求f

(x)(3)x4

-xy

+1

y4

=1

,求y'2

2

(0,1)2(0,1)=

1

y'4(0,1)=-1

y''解:4x3

-y

-xy'+2y3

y'=0\

12x2

-y'

-y'

-xy''

+6y2

y'

y'

+2y3

y''

=0解1:x

=1

t

=1t

xx\

y

=ln

1

+3x2(-

1

)

=-

1\

dy

=

1

dx

1

x

xx2

x2dx22

1

\

d

y

=

-(-

1

)

=d

2

ytdx2x

=

1

y

=

3

+

ln

t4、已知:,求t2t

dt解2:x

=1

dx

=-

1y

=

lnt

+

3

dy

=

1dt

tdx

tt

2\

y'

=

dy

=

1

(-

1

)

=

-t'2t

2dxdx2d

y

dy=

(-1)

(-

1

)

=

t

2\

==

-1,dt'

dyt2dtdx

=-

15、求f

(x)=x3

+3x2

-24x

-32的極值解:

f

'(x)=3x2

+6x

-24\f

'(x)=0

x

=-4,x

=2且無奇點1

2f

''

(x)

=6x

+6

f

''

(x

)

<0,

f

''

(x

)

>01

2\f極大(-4)=48,f極小(2)=-60x-axfi

axfi

a=lim[2j(x)

+(x

-a)j'

(x)]

=

2j(a)xfi

a

f

(x)

=(x

-a)2j(x)\

f

'

(x)

=

2(x

-a)j(x)

+(x

-a)2j'

(x)

f

'

(a)

=0'

'\

f

''

(a)

=lim

f

(x)-

f

(a)6、設j'(x)ct,f

(x)=(x

-a)2j(x),求f

''(a)解:j'

(x)ct

\

limj'

(x)

=j'

(a)四、證明:Pf:令f

(x)=sin

x

+tan

x

-2x2

f

(0)=0且"x?

(0,p

),cosx?

(0,1)f

'

(x)

=

cos

x

+sec2

x

-

2cos2

x=cosx

+

1

-221(1)證明:x

?

(0,p

)時,sin

x

+tan

x

>2x2即"x

?

(0,p

),sin

x

+tan

x

>2x\

f

(x)

?

f

(x)

>

f

(0)

=0cos2

xf

'

(x)

=cosx

+

1

-2cos2

x>cos2

x

+

1

-2cos2

x?2

cos2

x

1

-2

=02f

'

(x)

=

g(x)

=cosx

-1+

1

x23!即"x

>

0,sin

x

>

x

-

1

x362

f

(x)

?:f

(x)

=sinx

-x

+

1

x3

>

f

(0)

=0

g(x)

?:g(x)

=cosx

-1+

1

x2

>

g(0)

=0g'

(x)

=

h(x)

=-sinx

+

xh'

(x)

=-cosx

+1>0

h(x)

?:h(x)

=-sinx

+

x

>

h(0)

=06證:令f

(x)=sin

x

-x

+1

x3

,則x

>0時3!(2)證明:"x

>0,sin

x

>x

-

1

x3即

1

[xf

'(x)-f

(x)]=0Pf:令F(x)=

f

(x)

,則xF(x)?

C[a,b]

D(a,b)且F(a)=F(b)=0\$x?

(a,b)使F'(x)=0x2

xf

'

(x)

=

f

(x)2(1)設b

>a

>0,f

(x)?

C[a,b]

D(a,b),f

(a)=f

(b)=0證明:$x?

(a,b)使x

f

'(x)=f

(x)(2)

f

(x)?

C[0,b]

D(0,b),

f

(b)

=

0

$x?

(0,b)st:f

(x)

+xf

'

(x)

=

0證:令F(x)=xf

(x),則F(x)?

C[0,b]

D(0,b)且F(0)=F(b)=0F'

(x)

=

0由Rolle.Th:$x?

(0,b)使即:f

(x)+xf

'(x)=03(1)

f

(x)?

C[a,b]

D(2)

(a,b),a

<

x

<

x

<

x

<b,1

2

3f

(x1)

=

f

(x2

)

=

f

(x3)求證:$x?

(a,b)st:f

''(x)=0Pf:

f

(x)

?

C[a,

b]

D(a,

b)[x1

,

x2

] [a,

b],[x2

,

x3

] [a,

b]\

f

(x)

?

C[x1,

x2

]

D(x1,

x2

)f

(x)

?

C[x2

,

x3

]

D(x2

,

x3

)\

f

'

(x)

?

C[x

,x

]

D(x

,x

)1

2

1

2[a,

b][x1,x2

](a,b)使由Rolle.Th:$x?

(x1,x2

)f

''

(x)

=

0由R.Th:$x1

?

(x1,x2

),x2

?

(x2

,x3

)使f

'

(x

)

=

f

'

(x

)

=

01

2

f

'

(x)

?

C[a,

b]

D(a,

b)(2)f

(x)?

C[a,b]

D(2)(a,b),連接A(a,f

(a)),B(b,f

(b))的線段交y

=f

(x)于C(c,f

(c)),a

<c

<b,求證:$x?

(a,b)st:f

''(x)=0Pf:

f

(x)

?

C[a,

b]

D(a,

b)[a,

c] [a,

b],[c,

b] [a,

b]\

f

(x)

?

C[a,

c]

D(a,

c)f

(x)

?

C[c,

b]

D(c,

b)1

2

1

2\

f

'

(x)

?

C[x

,x

]

D(x

,x

)[a,

b][x1,x2

](a,b)使由Rolle.Th:$x?

(x1,x2

)f

''

(x)

=

0由L.Th:$x1

?

(a,c),x2

?

(c,b)使1

2

AB

f

'

(x)

?

C[a,

b]

D(a,

b)f

'

(x

)

=

f

'

(x

)

=

k4、證明至少存在一點x

?

(1,e)使sin1

=coslnx成立構造函數用相關定理注意寫出定理所需條件令f

(x)=sin1-cosln

x,在[1,e]上用零點Th令f

(x)=sinln

x

-ln

xsin1,在[1,e]上用洛爾Th令f

(x)=sinln

x,g(x)=ln

x,在[1,e]上用柯西Th令f

(x)

=cosln

x,

在[1,

e]上用介值Th(1)令f

(x)=sin1-cosln

x,在[1,e]上用零點ThPf:令f

(x)=sin1-cosln

x,則f

(x)?

C[1,e],且:f

(1)

=

sin1-1<

0,

f

(e)

=

sin1-cos1

>

0\由零點Th:$x

?

(1,e)使f

(x)=0即:sin1-coslnx

=0\$x

?

(1,e)使sin1

=cosln

x.#sin1

=

01

-

1x

x即:coslnx\$x

?

(1,e)使sin1

=cosln

x.#(2)令f

(x)=sinln

x

-ln

xsin1,在[1,e]上用洛爾ThPf:令f

(x)=sinln

x

-sin1

ln

x,則f

(x)?

C[1,e]

D(1,e),且:f

(1)

=

f

(e)

=

0\由洛爾Th:$x

?

(1,e)使f

'(x)=0x"

x

?

(1,

e),

g

'

(x)

=

1

?

0g'

(x)\

由Cauchy

Th:$x

?

(1,

e)使

g

(e)-g

(1)'

f

(e)-

f

(1)

=

f

(x)x

1x1

coslnx1-0sin1-sin0即:

=\$x

?

(1,e)使sin1

=cosln

x.#(3)令f

(x)=sinln

x,g(x)=ln

x,在[1,e]上用柯西ThPf:令f

(x)=sinln

x,g(x)=ln

x,則f

(x)?

C[1,e]

D(1,e),g(x)?

C[1,e]

D(1,e),且(4)令f

(x)=cosln

x,在[1,e]上用介值ThPf:令f

(x)=cosln

x,則f

(x)?

C[1,e],且:f

(1)

=1,

f

(e)

=cos1sin1?

(cos1,1)\由介值Th:$x

?

(1,e)使f

(x)=sin1即:coslnx

=sin1\$x

?

(1,e)使sin1

=cosln

x.#*(5)令f

(x)=sin

x,g(x)=ln

x,f

(x)在[0,1]上用Lagrang

Th后g(x)在[1,e]上用介值Th2*(6)sin1

=coslnx

cos(k1p

+

p

-1)

=coslnx22k2p

+

k1p

+

p

-1

=lnx取k1

=k2

=0,令g(x)=ln

x,在[1,e]上用介值Th解:據周期性有:f

(6)=f

(1),f

'(6)=f

'(1).

f

(x)連續且x

?

U

(0,d)時有:f

(1+sin

x)

-3

f

(1-sin

x)

=

8x

+(x)\

lim[

f

(1+sin

x)

-3

f

(1-sin

x)]xfi

0=

lim[8x

+(x)]xfi

0\

-2

f

(1)

=0

f

(1)

=0五、練習:1、教材P126總習題二14

f

'(1)存在且x

fi

0時有sin

x

~

xsinx

xsinxfi

0

xfi

0\

A=

lim

f

(1+sinx)-3

f

(1-sinx)

=lim8x+(x)

=8hhfi

0而A

=lim

f

(1+h)-3

f

(1-h)h

-hhfi

0

-hfi

0=lim

f

(1+h)-

f

(1)

+3

lim

f

(1-h)-

f

(1)f

(1)

=0=

f

'

(1)

+3

f

'

(1)

=4

f

'

(1)\

f

'

(1)

=

2\

f

(6)

=

f

(1)

=

0,

f

'

(6)

=

f

'

(1)

=

2.\所求切線l:y

-0

=2(x

-6)即:2

x

-y

-12

=0注1、求f(1):利用f

(x)連續且

x

fi

0時f

(1–sin

x)fi

f

(1).注2、求f

'(1):用到導數定義式中非零無窮小h的任意性2、教材P183總習題三19Pf

:令x0

=

(1-t)x1

+tx2

,則x0

?

(a,b)由Taylor公式:$x1,x2

?

(a,b)使f

(x

)

=

f

(x

)

+

f

'(x

)(x

-x

)

+1

f

'

(x

)(x

-x

)21

0

0

1

0

2

1

1

0f

(x

)

=

f

(x

)

+

f

'

(x

)(x

-x

)

+1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論