




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
?Copyright2016.MercuryLearningandInformation.Allrightsreserved.ArtificialIntelligenceinthe21stCentury
S.Lucci/D.Kopec
Chapter1:OverviewofArtificial
Intelligence1?Copyright2016.MercuryLearningandInformation.Allrightsreserved.OverviewofArtificialIntelligence
1.0Introduction1.1TheTuringTest1.2StrongAIversusWeakAI1.3Heuristics1.4IdentifyingProblemsSuitableforAI1.5ApplicationsandMethods1.6EarlyHistoryofAI1.7RecentHistoryofAItothePresent1.8AIintheNewMillennium2?Copyright2016.MercuryLearningandInformation.Allrightsreserved.Introduction.Thischapterexploresthefundamentalissues,topics,areas,andquestionswhicharetypicallyassociatedwithartificialintelligence.3Introduction/cont.
Artificial–usuallyhasanegativeconnotation
(synthetic–i.e.manmade)
e.g.artificialflowerlook…maybe feel ...no smell...no
artificiallight
naturallightelectriclight sunlightcandleskerosene
?Copyright2016.MercuryLearningandInformation.Allrightsreserved.4Introduction/cont.artificialmotion
naturalmotionplanes walkingtrains horseautomobiles?Copyright2016.MercuryLearningandInformation.Allrightsreserved.5IntelligenceIntelligenceistheabilityofanindividualtolearnfromexperience,toreasonwell,torememberimportantinformation,andtocopewiththedemandsofdailyliving.Intelligencemaybedefinedbroadlyasthefacilityatsolvingproblems.?Copyright2016.MercuryLearningandInformation.Allrightsreserved.6?Copyright2016.MercuryLearningandInformation.Allrightsreserved.SequenceProblems.1, 3,6, 10, 15, 21, ? 28isnextTriangularnumbersnthentry=e.g.2ndtriangular#=1, 2,2, 3,3,3,4,4, 4,4, ?2, 3,3,5, 5,5,7,7, 7,7, ?
0, 1,2, ? 3…notsofast!
7SequenceProblems/cont.Anotherpossibility…
0 = 0 1! = 1 2!! = (2!)!=(2x1)!=2!=2 3!!! = (3!)!!=((3x2)!)!=(6!)!=720!
Andfinally…9, 14,23, ??Copyright2016.MercuryLearningandInformation.Allrightsreserved.8?Copyright2016.MercuryLearningandInformation.Allrightsreserved.BuildingIntelligentSystems
KnowledgeRepresentationSearchLearning
KnowledgeRepresentation
-Productionrules …ifcondthenresult-Logic-Frames -Scripts-Semanticnetworks
9BuildingIntelligentSystems/cont.Framesandscriptsutilizetheprototypicalnatureofmostevents,e.g.visitstoarestaurant,
dentist,etc.
ConceptMaps,ConceptualGraphs,Agents?Copyright2016.MercuryLearningandInformation.Allrightsreserved.10?Copyright2016.MercuryLearningandInformation.Allrightsreserved.SearchBlindsearch–noknowledgeofproblemdomain
Depthfirstsearch(dfs) A,B,D,E,C,F,GBreadthfirstsearch(bfs)A,B,C,D,E,F,GHeuristicsearch–employestimatesofcloseness
to
goal.
11?Copyright2016.MercuryLearningandInformation.Allrightsreserved.Learning–improvedperformanceviapractice
Paradigms–connectionist/artificialneuralnetworks(ANN)e.g.learningaBooleanfunction–patternclassification
two-inputANDfunction
12Learning–improvedperformanceviapractice
FeatureextractionHowwouldyouteachthistoachild?Rewardwhencorrect,“punish”whenwrong.SUPERVISEDLEARNINGThisscalesupmaleorfemale?Whatarefeatureshere??Copyright2016.MercuryLearningandInformation.Allrightsreserved.13?Copyright2016.MercuryLearningandInformation.Allrightsreserved.EvolutionaryComputationCharlesDarwin–Britishnaturalist
“Ihavecalledthisprinciple,bywhicheachslight
variation,ifuseful,ispreserved,bythetermnaturalselection”–CharlesDarwinfrom“TheOriginofSpecies”,1859
14?Copyright2016.MercuryLearningandInformation.Allrightsreserved.EvolutionaryComputation
“Darwin’stheoryofevolutionaryselectionholdsthatvariationwithinspeciesoccursrandomlyandthatthesurvivalorextinctionofeachorganismisdeterminedbythatorganism’sabilitytoadapttoitsenvironment.”
/lucidate/librarySurvivalofthefittestNaturalselectionoccursinnatureatarateofthousandsormillionsofyears.Insideacomputer–evolutionproceedssomewhatfaster.15?Copyright2016.MercuryLearningandInformation.Allrightsreserved.
GeneticAlgorithms
TheproblemisencodedasastringExample: 3-puzzleStartState Goal
Operators…whereweassumeitistheblankthatmovesEncodetheseoperatorsasbinarystrings…Forexample,
00011011
16?Copyright2016.MercuryLearningandInformation.Allrightsreserved.
GeneticAlgorithms/cont.Asolutionforthispuzzle(whenoneexists)consistsofaseriesofmoves.Suchasolution(whethersuccessfulornotso)maythusberepresentedbyabinarystring.Forexample,thestring:001101correspondsto:
17GeneticAlgorithms/cont.?Copyright2016.MercuryLearningandInformation.Allrightsreserved.Toeachsuchstringweshallattachafitnessfunction.
Whatmetricwouldyoupropose?WewilldiscussGeneticAlgorithmslaterinthistext//we’regettingclose!18?Copyright2016.MercuryLearningandInformation.Allrightsreserved.
ReturningtotheissueofIntelligence…
Howdoesonedecideifsomeone(something?)isintelligent?Areanimalsintelligent? Dogs? Cats? Ants? Dolphins?Andifso,howwouldonemeasureit?…
CleverHans–Berlin,circa1900Ahorsethatknewhowtodomath…ordidit?19Intelligence
Intelligenceisthecharacteristicalmostuniversallyagreeduponassettinghumansapartfrom(andabove?)othercreatures.
Thedeclaredgoalofartificialintelligenceresearchistoteachmachinesto“think”,i.e.todisplaythosecharacteristicsusuallyassociatedwithhumanintelligence.?Copyright2016.MercuryLearningandInformation.Allrightsreserved.20?Copyright2016.MercuryLearningandInformation.Allrightsreserved.
CanMachinesThink?
Notaneatyesorno,butratherahighlyqualified“toacertainextentunderspecialconditions.”Doesaperson,animal,machinepossessintelligence…theanswerisnotbinary: Somepeoplearesmarterthanothers Someanimalsaresmarterthanothers
Turingrephrasedthisquestioninoperationalterms.i.e.hesoughttoseparate
functionalityfrom
implementation.(analogywithAbstractDataTypes–ADT)21?Copyright2016.MercuryLearningandInformation.Allrightsreserved.MeasuringIntelligenceAlanTuring(1950)proposedtwoimitationgamesInthefirst:-Aseriesofquestionsisasked.-Interrogatormustdeterminegenderofpersonontheotherside-Ifamanissuccessfulindeceivingtheinterrogator,thenwesaythathehaspassedthisimitationgameWhatquestionswouldyousuggest?22?Copyright2016.MercuryLearningandInformation.Allrightsreserved.
Thesecond… TheTuringTestforIntelligence.
LoebnerPrizeof$100,000
Isitacomputerorahuman?IfthecomputerissuccessfulindeceivingtheinterrogatorthenwesaythatithaspassedtheTuringTest.
23?Copyright2016.MercuryLearningandInformation.Allrightsreserved.TheTuringTest/cont.
ProposedQuestions:Sqrt(1000017)=?…notagoodidea,whynot?Areyouafraidofdying?Howdoesthedarkmakeyoufeel?Whatdoesitfeelliketobeinlove?Isthisavalidbarometerforintelligence?24?Copyright2016.MercuryLearningandInformation.Allrightsreserved.Block’sCriticismoftheTuringTest
EnglishtextisencodedinASCII
Henceaseriesofquestionsandanswersmaybestoredasa(verylarge)number.
OnecouldenvisionmanyinstancesoftheTuringTestbeingstoredonaverylargedatabase.
Passingthetestcouldthenbeaccomplishedbytablelookup.Granted,suchacomputersystemdoesnotexistatpresent…
Butifitdid,wouldyoufeelcomfortableincallingthiscomputerintelligent?
25?Copyright2016.MercuryLearningandInformation.Allrightsreserved.
Searle’sCriticismoftheTuringTest
TheChineseRoomwehaveaninterrogatorwhowillaskquestions–thistime-inChinese.-wehaveanindividualwhodoesnotknowChinese;thatpersonpossessesaverydetailed“rulebook.”tomostpeoplewhodonotknowChinese,thelanguageappearsassquiggles.
26Searle’sCriticismoftheTuringTest/cont.DoesthispersonknowChinese?
去卡內基音樂廳該怎麼走
("HowdoIgettoCarnegieHall?"
)
WhatistheanalogywiththeTuringTest??Copyright2016.MercuryLearningandInformation.Allrightsreserved.27?Copyright2016.MercuryLearningandInformation.Allrightsreserved.TheChineseRoom.
Nowenvisioninsteadofasinglepersonwitharulebook,awholegymnasiumofpeoplewith“notes”thatarepassedtooneanother.
DoesthegymnasiumknowChinese?…28TheChineseRoom/cont.?Copyright2016.MercuryLearningandInformation.Allrightsreserved.
OK–finallypicturethebrainofsomeonewhoindeedknowsChinese.DoesanindividualneuronknowChinese?Whatofacollectionoftheseneurons?WheredoestheknowledgeofChinesereside?29?Copyright2016.MercuryLearningandInformation.Allrightsreserved.Functionalityvs.ImplementationTuringwastryingtoseparatehowsomethingworksfromhowitcanbebuilt.
e.g.functionalityofacar: -steponthebrake-thecarshouldstop. -steponthegas-thecarshouldmove. -turnthesteeringwheelleft…
Implementation-meanwhileanautomotivefactorymustknowaboutengines,brakeliningsandtransmissions
30?Copyright2016.MercuryLearningandInformation.Allrightsreserved.DefenseofTuringPremise:Itisnotpossibletogaininsightontheinternalstateofsomethingfromexternalobservations.Rutherfordwasabletodeducetheinternalstateofmatter–mostlyspace(beforeelectronmicroscope)Matterhighenergyparticles31?Copyright2016.MercuryLearningandInformation.Allrightsreserved.StrongAIvs.WeakAIStrongAIisthebeliefthatprovidingacomputerwithintelligentsoftwaresomehowenablesthatmachinetothink.Anditwillpossessconsciousness(asenseof‘I’)muchashumansdo.
Hollywoodhaslongbeenaproponentofthisviewpoint,e.g.themovie“AI”inwhichtheandroidmaincharacteryearnstohavehisidentityacknowledged.32StrongAIvs.WeakAI/cont.WeakAI:Intelligentbehaviorcanbemodeledandusedbycomputerstosolvecomplexproblems.
Nopresuppositionismadethatthecomputerisintelligentinthewaythatahumanis.Mostartificialintelligenceresearcherssubscribetothisbelief.
?Copyright2016.MercuryLearningandInformation.Allrightsreserved.33?Copyright2016.MercuryLearningandInformation.Allrightsreserved.StrongMethodsvs.WeakMethodsWeakMethods:employsystemssuchaslogic,automatedreasoning,andothergeneralstructuresthatcanbeappliedtoawiderangeofproblems;donotincorporateanyrealknowledgeabouttheworldandtheproblemthatisbeingsolved.34StrongMethodsvs.WeakMethods
StrongMethods:dependonasystembeinggivenagreatdealofknowledgeaboutitsworldandtheproblemsthatitmightencounter
Example:ExpertSystemswiththeirstrongrelianceondomainknowledge.
Note:Thestrongvs.weakmethodsdichotomy
shouldnotbeconfusedwiththedistinctionbetweenstrongandweakAI.?Copyright2016.MercuryLearningandInformation.Allrightsreserved.35?Copyright2016.MercuryLearningandInformation.Allrightsreserved.Heuristics
Aheuristicisa“aruleofthumb”forsolvingaproblem.Thisistobecontrastedwithanalgorithmwhichisadefinite,effectiveprocedureguaranteedtosolveaproblem.Aheuristicmaybehelpfulinsolvingaproblembutitdoesnotguaranteeasolution.
36HeuristicExample.Example1:Whatisthediagonalofarectangularsolid?…
TheHeuristicemployed:Solveasimplerbutrelatedproblem.Youmaytherebygaininsightintotheoriginalproblem?Copyright2016.MercuryLearningandInformation.Allrightsreserved.37?Copyright2016.MercuryLearningandInformation.Allrightsreserved.Heuristics/cont.38?Copyright2016.MercuryLearningandInformation.Allrightsreserved.ASecondHeuristicHowcanyoufillexactly12quartsofwaterwhenyouhaveonlytwocontainers,aneightquartpailandaneighteenquartpail?
Onecouldusetrial-and-errorandjusthopeforthebest.39?Copyright2016.MercuryLearningandInformation.Allrightsreserved.ASecondHeuristic/cont.
Instead,Polyasuggeststheheuristicofstartingwiththegoalstateandworkingbackwards.40ASecondHeuristic/cont.
Workingbackwardtosolvethe12-QuartProblem.Patha,b,ctakesusfromthedesiredgoalstatetotheinitialstate.Toactuallysolvetheproblem,wewouldreversetheorder.
?Copyright2016.MercuryLearningandInformation.Allrightsreserved.41?Copyright2016.MercuryLearningandInformation.Allrightsreserved.AnAfterword
Problemsolvingviaheuristicsisanexampleofaweakmethod.HeuristicmethodswerepopularintheearlydaysofAI–the1950’sandintothe1960’s.StrongmethodsrepresentedaparadigmshiftinA.I.intheearly1970’swiththeadventofExpertSystems;therewasanemphasisontheimportanceofknowledgeinproblemsolving.42AnAfterword/cont.AnExpertSystem(E.S.)possesses(someof)theexpertiseofahumanexpertinalimiteddomain.MYCIN,anearly(andprobablybestknownE.S.)-wascapableofdiagnosingbacterialinfections.?Copyright2016.MercuryLearningandInformation.Allrightsreserved.43?Copyright2016.MercuryLearningandInformation.Allrightsreserved.AgentsAnagentisanentitythatiscapableofperceivingitsenvironmentandrespondingappropriatelytoit.
Iftheagentisintelligent,itshouldbeabletoweighalternatives.
Thisagentshouldbeabletoderivenewinformationfromdatabyapplyingsoundlogicalrules.
Itshouldpossessextensiveknowledgeinthedomainwhereitisexpectedtosolveproblems.
44ApplicationAreas/cont.WeexpecttocommunicatewiththisagentinanaturallanguagesuchasEnglishorChinese.?Copyright2016.MercuryLearningandInformation.Allrightsreserved.45ApplicationAreas/cont.HencethefollowingA.I.applicationareashavereceivedmuchinterest:
GamePlayingandPuzzlesAutomatedReasoningExpertSystemsLanguageUnderstanding?Copyright2016.MercuryLearningandInformation.Allrightsreserved.46?Copyright2016.MercuryLearningandInformation.Allrightsreserved.GamePlayingThe15-puzzle:15numbersarewrittenonsmallplasticsquaresandarearrangedwithinalargerplasticframe.Onepositionisleftblanksothatsmallertilesmayslideinasmanyasfourdirections.Anarbitraryarrangement.47GamePlaying/cont.Noticethatthe3isfreetomovedownandthe12canmovetotheright.Onlyonemovemayoccuratatime.?Copyright2016.MercuryLearningandInformation.Allrightsreserved.48?Copyright2016.MercuryLearningandInformation.Allrightsreserved.GamePlaying/cont.Smallerinstancesofthe15–puzzlearemoreconvenienttoworkwith.
The3–puzzleThe8-puzzle49GamePlaying/cont.Foreaseofpresentation,weconsiderthe3–puzzleinthefollowingexamples.Inthisclassofpuzzlesnumberedtilesmayslideinoneoffourdirections.Itismoreconvenient,however,toconsidertheblanktobemoving.Hence,ingeneral,theblankmaymoveinoneoffourdirections:
UpDown
RightLeft
?Copyright2016.MercuryLearningandInformation.Allrightsreserved.50?Copyright2016.MercuryLearningandInformation.Allrightsreserved.GamePlaying/cont.
Wearepresentedwithtwostatesofthispuzzle.One,thestartstateisarbitrary.Thesecond,thegoalstate,isalsoarbitrary,butisoftenchosenasthatarrangementwiththetiles‘inorder’.
StartStateGoalState51GamePlaying/cont.TheobjectofthispuzzleistogetfromtheStartStatetotheGoalState.Insomeinstances,asolutionwiththeminimumnumberofmovesissought.?Copyright2016.MercuryLearningandInformation.Allrightsreserved.52?Copyright2016.MercuryLearningandInformation.Allrightsreserved.GamePlaying/cont.TheuniverseofdiscourseforsuchproblemsiscalledtheStateSpaceTree.Itconsistsofallpossiblestatesofagivenproblem.
AStateSpaceTreewillbeatreewhoserootisthestartstateandoneofwhoseleavesisagoalstate.Branchesbetweenstatescorrespondtolegalmovesofthegame(orpuzzle)beingconsidered.
AportionoftheStateSpaceTreeforourinstanceofthe3-puzzle.53GamePlaying/cont.?Copyright2016.MercuryLearningandInformation.Allrightsreserved.Movesareexploredintheorder
ManynodesarerepeatedThistreemaybequitelargeevenforarelatively‘small’problem54?Copyright2016.MercuryLearningandInformation.Allrightsreserved.AutomatedReasoningPresentsthesoftwarewithacollectionoffacts
UsesdeductionExample:MichaelandLouiseachhaveajob.ThejobsarepostofficeclerkandFrenchprofessor.MichaelonlyspeaksEnglishandLouisholdsaPh.D.inFrench.55AutomatedReasoning/cont.ProductionrulesareusedasamethodofknowledgerepresentationGeneralForms: IF(condition)thenaction orIF(condition)thenfactUsedincreatingexpertsystemsAportionofanexpertsystemforautomobilediagnosis If(carwon'tstart)thencheckheadlights If(headlightswork)thencheckgasgauge If(gastankempty)thenaddgasolinetofueltank If(headlightsdon'twork)thencheckbattery?Copyright2016.MercuryLearningandInformation.Allrightsreserved.56?Copyright2016.MercuryLearningandInformation.Allrightsreserved.CellularAutomataMaybeviewedasacollectionofcellsin
n-dimensionalspace.Eachcellmaybeinanyoneofasmallnumberofstates,typicallytwo.CharacterizedbytwopropertiesPhysicaltopology:theshapeoftheCA,rectangularorhexagonal57CellularAutomata/cont.Updaterule:ruleusedtodeterminethenextstateofacellintermsofitspresentstateaswellasthestatesofitsneighboringcells.?Copyright2016.MercuryLearningandInformation.Allrightsreserved.58?Copyright2016.MercuryLearningandInformation.Allrightsreserved.UncertaintyReasoning.AIsystemsareplaguedwithuncertaintyChanceisaninimitablecomponentofourexistenceConsiderthefollowingsets:Setofpeoplewhoaresatisfiedwiththeirjob.Setofpeoplewhoareunsatisfiedwiththeirjob.ItisnotunusualforpeopletolovetheirjobandalsobeunsatisfiedYoucanconsiderthenthefuzzyset59?Copyright2016.MercuryLearningandInformation.Allrightsreserved.HistoryofAIDatesbacktoancientEgyptianswhobuiltstatuesthatcontainedhiddenprieststhatprovidedcounseltocitizens
Aristotleemphasizedtheabilityofpeopletoreason
BritishlogicianGeorgeBooleestablishedthesystemforexpressinglogicalexpressions--BooleanAlgebra60?Copyright2016.MercuryLearningandInformation.Allrightsreserved.LogicMachinesFirstlogicmachinewasbuiltbyCharlesStanhope(1753-1816)Best-knownandfirstprototypeofthemodern-daycomputerwasCharlesBabbage'sDifferenceEngine.TheAnalyticalEngine(successortotheDifferenceEngine,neverrealized)whichwouldbeabletoperformtasksthatrequirehumanthought,suchasgamesofskill–chess,checkers,etc.Babbage'sAnalyticalEngine61?Copyright2016.MercuryLearningandInformation.Allrightsreserved.LogicMachines/cont.TheNimotron,developedin1938byEdwardCondon,GeraldTwoneyandWillardDerr,wasthefirstmachinethatcouldplayacompletegameofskill
TheTurkdevelopedin1790byBaronvonKempelen.Asmallmaster-levelhumanchessplayerhidinsidethemachinefoolingpeopleintothinkingtheywereplayingagainstamachine
TorresyQuevedo(1852-1936)builtthefirstexpertsystem.ItplayedtheendgameKingandRookvsKinginchess.
62LogicMachines/cont.
KonradZusedevelopedcomputersbasedonvacuumtubesandelectro-mechanicalmemorycalledZ1,Z2,andZ3.TheZ3isthefirstreliable,freelyprogrammableworkingcomputerbasedonfloating-point.?Copyright2016.MercuryLearningandInformation.Allrightsreserved.63?Copyright2016.MercuryLearningandInformation.Allrightsreserved.GamesArthurSamueldevelopedaprogramtoplaycheckersbasedonatableof50heuristicsin1959.
RichardGreenblatt'sprogramwasthefirsttoplayclub-levelchess
ProgramscouldplayExpertlevelchess(top1%)bytheendofthe1970s.
KenThompson'sBellewasthefirstprogramtoofficallyachievetheMasterlevel.64Games/cont.HansBerliner’sHitechfromCarnegie-MellonUniversitywasthefirstSeniorMasterprogram.
Hsu,Campbell,etal.developedDeepThoughtfromCarnegie-MellonUniversitywhichbecamethefirstprogramtobeatGrandmastersonaregularbasis?Copyright2016.MercuryLearningandInformation.Allrightsreserved.65?Copyright2016.MercuryLearningandInformation.Allrightsreserved.Games/cont.DeepBlueplayedasix-gamematchwithWorldChampionGarryKasparovandlost4-2.
DeeperBlue(successortoDeepBlue)defeatedKasparov3.5-2.5in1997
JonathanSchaefferstartedwritingChinookin1989.
ChinooklosttoWorldCheckersChampionMarionTinsley4-2with34drawsin1992.
66Games/cont.The1994rematchendedafter6drawsduetoTinsley’spoorhealth.
In2007Checkerswas“weaklysolved”bySchaefferetal.?Copyright2016.MercuryLearningandInformation.Allrightsreserved.67?Copyright2016.MercuryLearningandInformation.Allrightsreserved.ExpertSystemsEarliestsystemwasDENDRAL.Itspurposewastoidentifyunknownchemicalcompoundsonthebasisoftheirmassspectrographs
MYCINwasdevelopedtofacilitatetheinvestigationofinfectiousblooddiseases.
Hadover400rulesUsedfortrainingresidentsatStanfordHospital
68ExpertSystems/cont.
XCON(some10,000rules)wasdevelopedtohelpconfigureelectricalboardsonVAXcomputers.Sincethe1980sthousandsofexpertsystemshavebeendeveloped.
Standalonesystemsandembeddedintoothersoftwaresystemsforcontrolpurposes.?Copyright2016.MercuryLearningandInformation.Allrightsreserved.69?Copyright2016.MercuryLearningandInformation.Allrightsreserved.AIintheNewMillenniumAImethodologieshavebeenabsorbedintotechnologiesforcomputerscienceExpertsystemsandsearchtechniquesthatspawnedfromAIresearcharenowusedinsystemssuchas
ALVINN–systemtocontrolavehicleFinancialdecisions–purchaseandsaleofstockWeb-basedagentssuchastheWorldWideWeb70?Copyright2016.MercuryLearningandInformation.Allrightsreserved.TheNext45YearsEventuallyintelligentsystemsthataresmall,unobtrusiveandembeddedwillbeabletopersevereandenhancepeople'smentalcapabilities.
Whatitmeanstobeahumanbeingmaybecomeapointofdiscussion
Wheredoesthepersonendandthemachinebegin,andviceversa?Reference:TheMovieBicentennialMan
RobinWilliams,JohnForsyth71KeyTermsagentalgorithmartificialartificialintelligence(AI)commonsenseheuristicintelligenceStrongAIWeakAIWorldknowledge?Copyright2016.MercuryLearningandInformation.Allrightsreserved.72SummaryThisChapterpresentsanoverviewofAI
ADiscussionofIntelligenceandsomeofthe
controversysurroundingaworkingdefinition–
includingthewell-knownTuringTest
Abriefhistoryofthefield–includingearlysystems
fromRomanTimestothepresent.
Earlyrelianceonheuristicstolateremphasison
knowledge?Copyright2016.MercuryLearningandInformation.Allrightsreserved.73Summary/cont.Theimportanceof: -KnowledgeRepresentation -Search -LearningSeveralsuccesseswerepresented:
-ExpertSystems
-Game-Playing
-NeuralNetworks
-GeneticAlgorithms?Copyright2016.MercuryLearningandInformation.Allrightsreserved.74ArtificialIntelligenceinthe21stCentury
S.Lucci/D.Kopec
Chapter2:
UninformedSearch?Copyright2016.MercuryLearningandInformation.Allrightsreserved.75?Copyright2016.MercuryLearningandInformation.Allrightsreserved.76Contents2.0
SearchinIntelligentSystems
2.1StateSpaceGraphs
2.2GenerateandTestParadigm
2.3BlindSearchAlgorithms
2.4ImplementingandComparingBlindSearchAlgorithms
Summary?Copyright2016.MercuryLearningandInformation.Allrightsreserved.77SearchinIntelligentSystems
Searchisanaturalpartofpeople’slives
Softwarethatsolvessearchproblemsfasteraredeemedtobemoreintelligent?Copyright2016.MercuryLearningandInformation.Allrightsreserved.782.1StateSpaceGraphsAmathematicalstructurethathelpstoformalizethesearchprocess
Possiblealternativepathsleadingtoasolutioncanbeexploredandanalyzed
Asoluti
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 設備拆除安全管理制度
- 設備檢測檢查管理制度
- 設備維護電池管理制度
- 設備設施控制管理制度
- 設計單位考勤管理制度
- 診室醫院感染管理制度
- 診所消防制度管理制度
- 診斷影像設備管理制度
- 調研法官助理管理制度
- 財務風險制度管理制度
- 10kV~500kV輸變電及配電工程質量驗收與評定標準:06變電自動化工程
- 高三家長會班主任發言稿課件
- 學前幼兒園-《快樂的小鼴鼠》教學課件設計
- 3停止間轉法教案
- 四川省綿陽市2021年中考生物考試真題與答案解析
- 世界史階段特征課件
- 2022-2023學年重慶市合川市三下數學期末學業質量監測模擬試題含解析
- 山東開放大學公共部門人力資源管理期末復習題
- 《園林植物識別與應用》項目七:綜合課業題庫及答案
- 人民醫院腫瘤科臨床技術操作規范2023版
- 物業承接查驗辦法培訓
評論
0/150
提交評論